際際滷

際際滷Share a Scribd company logo
13. Pada saat harga Jeruk Rp. 5.000 perKg permintaan akan jeruk tersebut sebanyak 1000Kg,
   tetapi pada saat harga jeruk meningkat menjadi Rp. 7.000 Per Kg permintaan akan jeruk
   menurun menjadi 600Kg, buatlah fungsi permntaannya ?
Jawaban:
   Dari soal diatas diperoleh data :
   P1 = Rp. 5.000         Q1 = 1000 Kg
   P2 = Rp. 7.000         Q2 = 600 Kg
   untuk menentukan fungsi permintaannya maka digunakan rumus persamaan garis melalui dua
   titik, yakni :
   y - y1          x - x1
   ------ = --------
   y2 - y1        x2 - x1

  dengan mengganti x = Q dan y = P maka didapat,
  P - P1      Q - Q1
  ------- = --------
  P2 - P1     Q2 - Q1

  mari kita masukan data diatas kedalam rumus :
     P - 5.000                          Q - 1000
  ----------------------- = ----------------
    7.000 - 5.000                     600 - 1000

           P - 5.000                 Q - 1000
  ----------------------- = ----------------
             2.000                      -400

   P - 5.000 (-400) = 2.000 (Q - 1000)
  -400P + 2.000.000 = 2000Q - 2.000.000
  2000Q = 2000.000 + 2.000.000 - 400P
  Q = 1/2000 (4.000.000 - 400P)
  Q = 2000 - 0,2P
  ============
  Jadi Dari kasus diatas diperoleh fungsi permintan Qd = 2000 - 0,2P

14. Pada saat harga durian Rp. 3.000 perbuah toko A hanya mampu menjual Durian
    sebanyak 100 buah, dan pada saat harga durian Rp. 4.000 perbuah toko A mampu
    menjual Durian lebih banyak menjadi 200 buah. dari kasus tersebut buatlah
    fungsi penawarannya ?
   Jawab :
   dari soal diatas diperoleh data sebagai berikut :
   P1 = 3.000 Q1 = 100 buah
   P2 = 4.000 Q2 = 200 buah
Langkah selanjutnya, kita memasukan data-data diatas kedalam rumus persamaan linear a:
   P - P1       Q - Q1
  -------- = ---------
P2 - P1     Q2 - Q1

      P - 3.000           Q - 100
   -------------- = -------------
   4.000 - 3.000        200 - 100

        P - 3.000         Q - 100
-------------- = -------------
       1.000             100

(P - 3.000)(100) = (Q - 100) (1.000)
   100P - 300.000 = 1.000Q - 100.000
   1.000Q = -300.000 + 100.000 + 100P
   1.000Q = -200.000 + 100P
   Q = 1/1000 (-200.000 + 100P )
   Q = -200 + 0.1P
   ============
   Jadi dari kasus diatas diperoleh Fungsi penawaran : Qs = -200 + 0,1P
15. Tentukan jumlah barang dan harga pada keseimbangan pasar untuk fungsi permintaan Qd =
   10 - 0,6Pd dan fungsi penawaran Qs = -20 + 0,4Ps.
Jawaban:
   Keseimbangan terjadi apabila Qd = Qs, Jadi
   10 - 0,6Pd = -20 + 0,4Ps
   0,4P + 0,6P = 10 + 20
   P = 30

   Setelah diketahui nilai P, kita masukan nilai tersebut kedalam salah satu fungsi tersebut:
   Q = 10 - 0,2(30)
   Q = 10 - 6
   Q = 4,
   Jadi keseimbangan pasar terjadi pada saat harga (P)=30 dan jumlah barang (Q) = 4.

16. Fungsi permintaan akan suatu barang ditunjukkan oleh persamaan P = 15  Q,       sedangkan
   penawaranannya P = 3 + 0.5 Q. Terhadap barang tersebut dikenakan pajak sebesar 3 perunit.
   Berapa harga keseimbangan dan jumlah keseimbangan sebelum pajak dan berapa pula jumlah
   keseimbangan sesudah pajak ?
Jawaban:
   Sebelum pajak Pe = 7 dan Qe = 8 (contoh di atas). Sesudah pajak, harga jual yang ditawarkan
   oleh produsen menjadi lebih tinggi. Persamaan penawaran berubah dan kurva bergeser ke atas.
Penawaran sebelum pajak : P = 3 + 0.5 Q
  Penawaran sesudah pajak : P = 3 + 0.5 Q + 3

  P = 6 + 0.5 Q Q = -12 + 2 P
  Sedangkan persamaan permintaan tetap :
  Q = 15  P

  Keseimbangan pasar : Qd = Qs
  15  P = -12 + 2P
  27 = 3P
  P=9

  Q = 15  P
  Q = 15  9
  Q =6

   Jadi, sesudah pajak : Pe = 9 dan Qe = 6
17. Dalam suatu pasar diketahui fungsi permintaannya Qd = 40 - 2P dan fungsi penawarannya Ps
   = Q + 5, berdasarkan informasi tersebut maka harga keseimbangan terjadi pada...
Jawaban:

keseimbangan pasar terjadi apabila Qd = Qs atau Pd = Ps, Jadi karena pada soal diketahui Qd dan
  Ps, maka kita dapat mensubtitusikan kedua persamaan tersebut untuk memperoleh harga
  keseimbangan.
Qd = 40 - 2P dan Ps = Q + 5, Kita subtitusikan menjadi :
Q = 40 - 2(Q + 5)
Q = 40 - 2Q - 10
Q = 40-10-2Q
Q = 30 - 2Q
Q + 2Q = 30
3Q = 30
Q = 30/3
Q = 10
Setelah nilai Q diketahui, maka langkah selanjutnya kita memasukan nilai Q kedalam fungsi Ps
  untuk memperoleh harga keseimbangan.
Ps = 10 + 5
Ps = 15
Jadi harga keseimbangan terjadi pada saat Q = 10 dan P = 15.

18.When the price of a "Lancer" Notebook is Rp.5.000.000,00/unit, the demand is 80 units, If the
   price increases 10%, the demand decreases to 60 units. Based on that data, the demands
   function is...
Jawaban:
dari data diatas diperoleh data-data sebagai berikut:
P1 = 5.000.000 Q1 = 80
Jika harga naik 10% (P2 = (10% x 5.000.000) + 5.000.000 = 5.500.000) maka Q2 = 60
langkah selanjutnya, kita masukan data-data diatas kedalam persamaan fungsi permintaannya:
  P - P1       Q - Q1
   ---------- = -----------
     P2 - P1 Q2 - Q1

      P - 5.000.000                       Q - 80
  ------------------------- = ------------------
    5.500.000 - 5.000.000                    60 - 80
      P - 5.000.000                   Q - 80
  ------------------------- = ------------------
              500.000                       -20

  (P - 5.000.000)(-20) = (Q - 80)(500.000)
  -20P + 100.000.000 = 500.000Q - 40.000.000
  500.000Q = 100.000.000 + 40.000.000 - 20P
  500.000Q = 140.000.000 - 20P
  Q = 1/500.000 (140.000.000 - 20P)
  Q = 280.000 - 0,00004P atau
  Q = 280 - 0,04P



19.When the price is Rp. 15.000,00 the request of lamp is to 4.000 for each goods of, and for every
   increase of price of Rp. 1.000,00 the request of lamp going down 500 for each goods of. Pursuant
   to the data, the demand function is...
Jawaban:
   dari data diatas diperoleh data-data sebagai berikut :
   P1 = 15.000 Q1=4000
   jika kenaikan harga perunit (P) = 1.000 maka harga barang (Q) akan turun 500 perunit.
   jadi apabila P2 = 16.000 maka Q2=3500
   Setelah itu data-data diatas kita masukan kedalam fungsi persamaannya:
     P - P1         Q - Q1
   ---------- = -----------
    P2 - P1         Q2 - Q1

      P - 15.000              Q - 4.000
  ----------------- = ----------------
  16.000 - 15.000           3.500 - 4.000

     P - 15.000               Q - 4.000
  ----------------- = ----------------
1.000              -500

  (P - 15.000)(-500) = (Q - 4.000)(1.000)
  -500P + 7.500.000 = 1.000Q - 4.000.000
  1000Q = 4.000.000 + 7.500.000 - 500P
  Q = 1/1000 (11.500.000 - 500P)
  Q = 11.500 - 0,5P
  ==============
  Jadi fungsi permintaan dari soal diatas adalah Q = 11.500 - 0,5P




20.Permintaan akan durian di Medan ditunjukkan oleh persamaan Q = 80 - 2P, sedangkan
   penawarannya dicerminkan oleh persamaan Q = -120 + 8P. Harga keseimbangan dan jumlah
   keseimbangan pasar durian di medan adalah...
Jawaban:
   Keseimbangan terjadi pada saat Qd = Qs, Jadi
   80 - 2P = -120 + 8P
   8P + 2P = 120 + 80
   10P = 200
   P = 200 / 10
   P = 20
   Nilai P kita masukan kedalam fungsi permintaan atau penawaran untuk mencari berapa jumlah
   harga keseimbangan :
   Qs = -120 + 8(20)
   Qs = -120 + 160
   Qs = 40
   Jadi Jumlah barang dan harga keseimbangan masing-masing adalah 40 dan 20.

21.Diketahui pers kuadrat x^2 -4x +2p=0. Tentukan batas nilai p agr pers kuadrat tsb,
   1. Mempunyai 2 akar real yg brbeda.
   2. Mempunyai 2 akar kmbar.
   3. Tdk mempunyai akr reaal.

Jawaban:
x^2 - 4x + 2p = 0
   <==> x^2 +(-4)x +2p = 0
   a = 1, b = -4 dan c = 2p

  1. Mempunyai 2 akar real yg brbeda
  jika diskriminan, D > 0
  b^2 -4ac > 0
  16 - 8p > 0
p<2

  2. Mempunyai 2 akar kmbar.
  jika diskriminan, D = 0
  b^2 - 4ac = 0
  16 - 8p = 0
  p=2

   3. Tdk mempunyai akr real
   jika diskriminan, D < 0
   b^2 - 4ac < 0
   16 - 8p < 0
   p>2
22. jika p dan q adalah akar-akar dari persamaan x^2+bx-2=0 dan p/2q=(p-(1/2)),
   maka berapakah b?

   Jawaban:
  p + q = -b
   q = -b - p
   pq = -2

  p(-b - p) = -2. . . . . . . . . . . . . . (persamaan 1)

  p/(2q) = p - (1/2)

  p/(2(-b - p)) = p - (1/2). . . . . . . . . . . . . . (persamaan 2)

  selesaikan dua persamaan simultan di atas dan diperoleh:

  p = -2 賊6

  b=4

23.Jika akar-akar persamaan x^2+5x+a=0 dua kali akar-akar persamaan 2x^2+bx-3=0,
   maka berapakah a+b?

 Jawaban:
 x族 + 5x + a = 0
  akar akarnya adalah

  p dan q
  pq = a
  p + q = -5
2x族 + bx - 3 = 0

   akar-akarnya adalah 遜 p dan 遜 q

   (遜 p)(遜 q) = 村 pq = 村 a = -3/2
   a = -6



   遜 p + 遜 q = 遜 (p + q) = 遜(-5) = -b/2
   b=5

   a + b = -6 + 5
   a + b = -1

24.Akar- akar dari persamaan x2  x  3 = 0 adalah p dan q. Persamaan kuadrat yang akar 
   akarnya p2 + q dan p + q2 adalah . . .

 Jawaban:
 p+q=1
  pq = -3

   jumlah akar2nya adalah

   -b/a = (p族 + q) + (p + q族) = (p + q)族 - 2pq + (p + q)
   -b/a = (1)族 - 2(-3) + (1) = 8

   perkalian akar2nya adalah

   c/a = (p族 + q)(p + q族) = (p続 + q続) + (pq)族 + pq
   c/a = (p + q)続 - 3pq(p + q) + (pq)族 + pq
   c/a = (1)続 - 3(-3)(1) + (-3)族 + (-3)
   c/a = 16

   maka persamaan yang baru adalah

   x族 + (b/a)x + (c/a) = 0
   x族 - 8x + 16 = 0

25. f(x) = (x^2+4x)/(x^2+2) . Interval daerah hasil (kodomain) fungsi f adalah . .

   Jawaban:
ada dua bentuk f斬(x) yaitu :
  f斬(x) = (2 - 2 (-x族 + x + 2))/(x - 1)
  jika x diambil limit mendekati 1, maka
  lim (2 - 2 (-x族 + x + 2))/(x - 1) = 1/2
  x1
  jadi bentuk f斬(x) = (2 - 2 (-x族 + x + 2))/(x - 1) kontinu di setiap bilangan real.

   atau

   f斬(x) = (2 + 2 (-x族 + x + 2))/(x - 1)
   jika x diambil limit mendekati 1, maka
   lim (2 + 2 (-x族 + x + 2))/(x - 1) = 
   x1

   karena fungsi harus memetakan dengan tepat setiap anggota himpunan f斬(x), maka dari bentuk
   f斬(x) di atas daerah asal f斬(x) dipenuhi oleh setiap real bilangan x kecuali di x = 1

  f(x) = (x族 + 4x)/(x族 + 2)

   mungkin yang dimaksud soalnya adalah mencari rentang nilai f(x) artinya mencari interval f(x)
   diantara nilai maksimum dan minimumnya.

   f'(x) = -(4(x - 2)(x + 1))/(x族 + 2)族
   f''(x) = (4(2x続 - 3x族 - 12x + 2))/(x族 + 2)nilai maksimum diperoleh jika

    f'(x) = -(4(x - 2)(x + 1))/(x族 + 2)族 = 0
    x = -1 atau x = 2
    dan
    f''(x) < 0
    f''(2) = -1/3 < 0
    f(2) = 2
    dan nilai minimum diperoleh jika
    f'(x) = 0
    f''(-1) = 4/3 > 0
f(-1) = -1
    kesimpulannya :
    -1  f(x)  2

26. Jika diketahui sebuah barisan a, b, c, . . dengan 1/a, 1/b, 1/c, . . . barisan aritmatika
    maka nilai 1/a + 1/c adalah . . .

  Jawaban:
3x + 1< 2x - 6

  (3x + 1)族 < 2(x - 6)族

  7 x族 + 30x - 71 < 0
  himpunan penyelesaian = {x| -13 < x < 11/5 , x  }

27. Interval penyelesaian pertidaksamaan 3x + 1<2x - 6adalah . . .

   Jawaban:
   b - a = c - b. . . . . . . . . . . (pers 1)
    1/b - 1/a = 1/c - 1/b
    (a - b)/(ab) = (b - c)/(bc). . . . . . . . . . . (pers 2)

substitusikan persamaan 1 ke 2,
1/ab - 1/bc = 0
   (1/b)(1/a - 1/c) = 0
   (c - a)/ac = 0
   a=c

  b0
  a0
  c0

  dari pers 1,

  b-a=c-b
  b-a=a-b
  2a = 2b
  a=b=c
  sehingga
  1/a + 1/c = 1/b + 1/b = 2/b

28. Keliling suatu persegi panjang adalah 40 cm. Jika panjangnya 10 cm lebih dari
    lebarnya, maka model matematikanya adalah...

 Jawaban:
 Keliling = 2 x ( P + L )
  40 = 2 x ( 10+L + L)
  40 = 2 x (10 + 2L)
  20 = 10 + 2L
  2L = 10
  L=5
P = 10 + L
   P = 10 + 5
   P = 15
   Jadi : 2 (p+l)= 40 ; p-l = 10

29. Fungsi f pd R ditentukan dgn rumus f(x) = mx + n dgn m, n bilangan real. Jika diket
   f(3) = 16 dan f(-2) = -4. Tentukan rumus fungsi f tsb?

  Jawaban:
  f(x)=mx+n
    f(3) = 3m + n
    16 = 3m + n
    f(-2) = -2m + n
    -4 = -2m + n
    16=3m+n
    -4=-2m+n
  ------------------ -
    20 = m
    16 = 60 + n
    n= - 44
    f(x) = mx +n
    f(x)= 20 x  44

30 Tentukan himpunan penyelesaian dari x + 2/3y = 2 dan 4/3x + y = 4

  Jawaban:

 x+ 2/3y =2
  ------------------ kali 3 ( saya asumsikan soal anda 2/3*Y bukan 2:3Y)
  3x + 2y =6

   4/3*x +y = 4
   ----------------- kalikan 3
   4 x + 3 y = 12

   3x+2y=6 ----> kalikan 3 -----> 9x+6y=18
   4x +3y=12 --> kalikan 2 -----> 8x+6y=24
   -------------------------------------- -
X = -6

   4/3 *x+y =4
   4/3*-6 +y =4
   -8 + y=4
Y= 4+8
  Y= 12

  Himpunan Penyelesaiannya : { -6, 12 }

31. agar (a-2)x^2-2(2a-3)x+5a-6>0 untuk setiap x, maka a memenuhi...

   Jawaban:
  syarat pertama:
   (a-2) > 0
    a>2

  syarat kedua,
  D<0
  b族 - 4ac < 0
  [-2(2a-3)]族 - 4(a-2)(5a-6) < 0
  -4(a-1)(a-3) < 0
  (a-1)(a-3) > 0
  a < 1 atau a > 3
  irisan dari syarat pertama dan kedua adalah a > 3

32. garis y= -x-3 menyinggung parabola y^2-2y+px=15. absis puncak parabola adalah..

  Jawaban:
 y= -x-3 ...(1)
  y^2-2y+px=15 .... (2)
  substitusi persamaan (1) ke (2)

  ( -x-3)^2 - 2(-x-3) + px = 15
  x^2 + 6x + 9 + 2x + 6 + px - 15 = 0
  x^2 + ( p+8)x = 0
  dua kurva menyinggung artinya D = 0
  (p+8)^2 - 4*1*0 = 0
  p = -8

  y^2-2y+px=15
  y^2 - 2y -8x = 15
  8x = y^2 - 2y - 15
  x = 1/8 y^2 - 1/4y - 15/8

  ordinat puncak parabola y = -b/2a
  y = -(-1/4) / (2* 1/8)
  y=1
x = 1/8 y^2 - 1/4y - 15/8
  x = 1/8* 1^2 - 1/4 * 1 - 15/8
  x = -2

33.Nilai maksimumnya 3 untuk x=1 & grafiknya mlalui titik (3,1) memotong di sumbu Y
   di titik...

  Jawaban:

Rumus fungsi kuadrat :
  ax^2 + bx + c

  Rumus persamaan sumbu simetri :
  x = -b/2a

  >> 1 = -b / 2a
  >> -b = 2a
  >> b = -2a

  lalu substitusikan ke fungsi kuadrat

  f (x) = ax^2 + bx + c
  >>>= ax^2 + (-2a)x + c
  >>>= ax^2 - 2ax + c

  untuk x = 1 , mempunyai nilai maksimum 3
  f (x) = ax^2 - 2ax + c
  f (1) = a - 2a + c
  >>>= -a + c
  > 3 = -a + c............................(persamaan 1)

  Melalui titik (3, 1)
  f (x) = ax^2 - 2ax + c
  f (3) = a (3)^2 - 2 a (3) + c
  >>>= 9a - 6a + c
  > 1 = 3a + c ..........................(persamaan 2)

  Dari 2 persamaan tsb ,
  -a + c = 3 ..............*3
  3a + c = 1............ ..*1, sehingga

  -3a + 3c = 9
3a + c = 1
  -------------------- +
  >>> 4c = 10
  >>> c = 10/4
  >>>>>> = 2 1/2
  Jadi memotong di sb. Y di titik ( 0 , 2 1/2)

34. f(x)= -x^+3
    -x^= -x pangkat 2
    tentukan:
    a. Titik potong dengan sumbu X
    b. Titik potong dengan sumbu Y
    c. Titik puncak

 Jawaban:

f(x) = -x族 + 3
   y = -x族 + 3
   a. Titik potong dengan sumbu x, berarti y = 0

  y = -x族 + 3
  0 = -x族 + 3
  x族 = 3
  x = 賊3
  (0,3),(0,-3)

  b. Titik potong dengan sumbu y, berarti x = 0

  y = -x族 + 3
  y=3
  (0,3)

  c. Titik puncak

  y = -x族 + 3
  a = -1 b = 0 c = 3
  x = -b/2a
  x = -0/2(-1)
  x=0
  y = -(0)族 + 3
  y=3
  (0,3)
35.Diketahui fungsi kuadrat f(x) = 2x2 (2x kuadrat) + 5x + 2a + 3 melalui titik A (1, 14).
  Tentukan nilai a

More Related Content

Latihan soal

  • 1. 13. Pada saat harga Jeruk Rp. 5.000 perKg permintaan akan jeruk tersebut sebanyak 1000Kg, tetapi pada saat harga jeruk meningkat menjadi Rp. 7.000 Per Kg permintaan akan jeruk menurun menjadi 600Kg, buatlah fungsi permntaannya ? Jawaban: Dari soal diatas diperoleh data : P1 = Rp. 5.000 Q1 = 1000 Kg P2 = Rp. 7.000 Q2 = 600 Kg untuk menentukan fungsi permintaannya maka digunakan rumus persamaan garis melalui dua titik, yakni : y - y1 x - x1 ------ = -------- y2 - y1 x2 - x1 dengan mengganti x = Q dan y = P maka didapat, P - P1 Q - Q1 ------- = -------- P2 - P1 Q2 - Q1 mari kita masukan data diatas kedalam rumus : P - 5.000 Q - 1000 ----------------------- = ---------------- 7.000 - 5.000 600 - 1000 P - 5.000 Q - 1000 ----------------------- = ---------------- 2.000 -400 P - 5.000 (-400) = 2.000 (Q - 1000) -400P + 2.000.000 = 2000Q - 2.000.000 2000Q = 2000.000 + 2.000.000 - 400P Q = 1/2000 (4.000.000 - 400P) Q = 2000 - 0,2P ============ Jadi Dari kasus diatas diperoleh fungsi permintan Qd = 2000 - 0,2P 14. Pada saat harga durian Rp. 3.000 perbuah toko A hanya mampu menjual Durian sebanyak 100 buah, dan pada saat harga durian Rp. 4.000 perbuah toko A mampu menjual Durian lebih banyak menjadi 200 buah. dari kasus tersebut buatlah fungsi penawarannya ? Jawab : dari soal diatas diperoleh data sebagai berikut : P1 = 3.000 Q1 = 100 buah P2 = 4.000 Q2 = 200 buah
  • 2. Langkah selanjutnya, kita memasukan data-data diatas kedalam rumus persamaan linear a: P - P1 Q - Q1 -------- = --------- P2 - P1 Q2 - Q1 P - 3.000 Q - 100 -------------- = ------------- 4.000 - 3.000 200 - 100 P - 3.000 Q - 100 -------------- = ------------- 1.000 100 (P - 3.000)(100) = (Q - 100) (1.000) 100P - 300.000 = 1.000Q - 100.000 1.000Q = -300.000 + 100.000 + 100P 1.000Q = -200.000 + 100P Q = 1/1000 (-200.000 + 100P ) Q = -200 + 0.1P ============ Jadi dari kasus diatas diperoleh Fungsi penawaran : Qs = -200 + 0,1P 15. Tentukan jumlah barang dan harga pada keseimbangan pasar untuk fungsi permintaan Qd = 10 - 0,6Pd dan fungsi penawaran Qs = -20 + 0,4Ps. Jawaban: Keseimbangan terjadi apabila Qd = Qs, Jadi 10 - 0,6Pd = -20 + 0,4Ps 0,4P + 0,6P = 10 + 20 P = 30 Setelah diketahui nilai P, kita masukan nilai tersebut kedalam salah satu fungsi tersebut: Q = 10 - 0,2(30) Q = 10 - 6 Q = 4, Jadi keseimbangan pasar terjadi pada saat harga (P)=30 dan jumlah barang (Q) = 4. 16. Fungsi permintaan akan suatu barang ditunjukkan oleh persamaan P = 15 Q, sedangkan penawaranannya P = 3 + 0.5 Q. Terhadap barang tersebut dikenakan pajak sebesar 3 perunit. Berapa harga keseimbangan dan jumlah keseimbangan sebelum pajak dan berapa pula jumlah keseimbangan sesudah pajak ? Jawaban: Sebelum pajak Pe = 7 dan Qe = 8 (contoh di atas). Sesudah pajak, harga jual yang ditawarkan oleh produsen menjadi lebih tinggi. Persamaan penawaran berubah dan kurva bergeser ke atas.
  • 3. Penawaran sebelum pajak : P = 3 + 0.5 Q Penawaran sesudah pajak : P = 3 + 0.5 Q + 3 P = 6 + 0.5 Q Q = -12 + 2 P Sedangkan persamaan permintaan tetap : Q = 15 P Keseimbangan pasar : Qd = Qs 15 P = -12 + 2P 27 = 3P P=9 Q = 15 P Q = 15 9 Q =6 Jadi, sesudah pajak : Pe = 9 dan Qe = 6 17. Dalam suatu pasar diketahui fungsi permintaannya Qd = 40 - 2P dan fungsi penawarannya Ps = Q + 5, berdasarkan informasi tersebut maka harga keseimbangan terjadi pada... Jawaban: keseimbangan pasar terjadi apabila Qd = Qs atau Pd = Ps, Jadi karena pada soal diketahui Qd dan Ps, maka kita dapat mensubtitusikan kedua persamaan tersebut untuk memperoleh harga keseimbangan. Qd = 40 - 2P dan Ps = Q + 5, Kita subtitusikan menjadi : Q = 40 - 2(Q + 5) Q = 40 - 2Q - 10 Q = 40-10-2Q Q = 30 - 2Q Q + 2Q = 30 3Q = 30 Q = 30/3 Q = 10 Setelah nilai Q diketahui, maka langkah selanjutnya kita memasukan nilai Q kedalam fungsi Ps untuk memperoleh harga keseimbangan. Ps = 10 + 5 Ps = 15 Jadi harga keseimbangan terjadi pada saat Q = 10 dan P = 15. 18.When the price of a "Lancer" Notebook is Rp.5.000.000,00/unit, the demand is 80 units, If the price increases 10%, the demand decreases to 60 units. Based on that data, the demands function is... Jawaban:
  • 4. dari data diatas diperoleh data-data sebagai berikut: P1 = 5.000.000 Q1 = 80 Jika harga naik 10% (P2 = (10% x 5.000.000) + 5.000.000 = 5.500.000) maka Q2 = 60 langkah selanjutnya, kita masukan data-data diatas kedalam persamaan fungsi permintaannya: P - P1 Q - Q1 ---------- = ----------- P2 - P1 Q2 - Q1 P - 5.000.000 Q - 80 ------------------------- = ------------------ 5.500.000 - 5.000.000 60 - 80 P - 5.000.000 Q - 80 ------------------------- = ------------------ 500.000 -20 (P - 5.000.000)(-20) = (Q - 80)(500.000) -20P + 100.000.000 = 500.000Q - 40.000.000 500.000Q = 100.000.000 + 40.000.000 - 20P 500.000Q = 140.000.000 - 20P Q = 1/500.000 (140.000.000 - 20P) Q = 280.000 - 0,00004P atau Q = 280 - 0,04P 19.When the price is Rp. 15.000,00 the request of lamp is to 4.000 for each goods of, and for every increase of price of Rp. 1.000,00 the request of lamp going down 500 for each goods of. Pursuant to the data, the demand function is... Jawaban: dari data diatas diperoleh data-data sebagai berikut : P1 = 15.000 Q1=4000 jika kenaikan harga perunit (P) = 1.000 maka harga barang (Q) akan turun 500 perunit. jadi apabila P2 = 16.000 maka Q2=3500 Setelah itu data-data diatas kita masukan kedalam fungsi persamaannya: P - P1 Q - Q1 ---------- = ----------- P2 - P1 Q2 - Q1 P - 15.000 Q - 4.000 ----------------- = ---------------- 16.000 - 15.000 3.500 - 4.000 P - 15.000 Q - 4.000 ----------------- = ----------------
  • 5. 1.000 -500 (P - 15.000)(-500) = (Q - 4.000)(1.000) -500P + 7.500.000 = 1.000Q - 4.000.000 1000Q = 4.000.000 + 7.500.000 - 500P Q = 1/1000 (11.500.000 - 500P) Q = 11.500 - 0,5P ============== Jadi fungsi permintaan dari soal diatas adalah Q = 11.500 - 0,5P 20.Permintaan akan durian di Medan ditunjukkan oleh persamaan Q = 80 - 2P, sedangkan penawarannya dicerminkan oleh persamaan Q = -120 + 8P. Harga keseimbangan dan jumlah keseimbangan pasar durian di medan adalah... Jawaban: Keseimbangan terjadi pada saat Qd = Qs, Jadi 80 - 2P = -120 + 8P 8P + 2P = 120 + 80 10P = 200 P = 200 / 10 P = 20 Nilai P kita masukan kedalam fungsi permintaan atau penawaran untuk mencari berapa jumlah harga keseimbangan : Qs = -120 + 8(20) Qs = -120 + 160 Qs = 40 Jadi Jumlah barang dan harga keseimbangan masing-masing adalah 40 dan 20. 21.Diketahui pers kuadrat x^2 -4x +2p=0. Tentukan batas nilai p agr pers kuadrat tsb, 1. Mempunyai 2 akar real yg brbeda. 2. Mempunyai 2 akar kmbar. 3. Tdk mempunyai akr reaal. Jawaban: x^2 - 4x + 2p = 0 <==> x^2 +(-4)x +2p = 0 a = 1, b = -4 dan c = 2p 1. Mempunyai 2 akar real yg brbeda jika diskriminan, D > 0 b^2 -4ac > 0 16 - 8p > 0
  • 6. p<2 2. Mempunyai 2 akar kmbar. jika diskriminan, D = 0 b^2 - 4ac = 0 16 - 8p = 0 p=2 3. Tdk mempunyai akr real jika diskriminan, D < 0 b^2 - 4ac < 0 16 - 8p < 0 p>2 22. jika p dan q adalah akar-akar dari persamaan x^2+bx-2=0 dan p/2q=(p-(1/2)), maka berapakah b? Jawaban: p + q = -b q = -b - p pq = -2 p(-b - p) = -2. . . . . . . . . . . . . . (persamaan 1) p/(2q) = p - (1/2) p/(2(-b - p)) = p - (1/2). . . . . . . . . . . . . . (persamaan 2) selesaikan dua persamaan simultan di atas dan diperoleh: p = -2 賊6 b=4 23.Jika akar-akar persamaan x^2+5x+a=0 dua kali akar-akar persamaan 2x^2+bx-3=0, maka berapakah a+b? Jawaban: x族 + 5x + a = 0 akar akarnya adalah p dan q pq = a p + q = -5
  • 7. 2x族 + bx - 3 = 0 akar-akarnya adalah 遜 p dan 遜 q (遜 p)(遜 q) = 村 pq = 村 a = -3/2 a = -6 遜 p + 遜 q = 遜 (p + q) = 遜(-5) = -b/2 b=5 a + b = -6 + 5 a + b = -1 24.Akar- akar dari persamaan x2 x 3 = 0 adalah p dan q. Persamaan kuadrat yang akar akarnya p2 + q dan p + q2 adalah . . . Jawaban: p+q=1 pq = -3 jumlah akar2nya adalah -b/a = (p族 + q) + (p + q族) = (p + q)族 - 2pq + (p + q) -b/a = (1)族 - 2(-3) + (1) = 8 perkalian akar2nya adalah c/a = (p族 + q)(p + q族) = (p続 + q続) + (pq)族 + pq c/a = (p + q)続 - 3pq(p + q) + (pq)族 + pq c/a = (1)続 - 3(-3)(1) + (-3)族 + (-3) c/a = 16 maka persamaan yang baru adalah x族 + (b/a)x + (c/a) = 0 x族 - 8x + 16 = 0 25. f(x) = (x^2+4x)/(x^2+2) . Interval daerah hasil (kodomain) fungsi f adalah . . Jawaban:
  • 8. ada dua bentuk f斬(x) yaitu : f斬(x) = (2 - 2 (-x族 + x + 2))/(x - 1) jika x diambil limit mendekati 1, maka lim (2 - 2 (-x族 + x + 2))/(x - 1) = 1/2 x1 jadi bentuk f斬(x) = (2 - 2 (-x族 + x + 2))/(x - 1) kontinu di setiap bilangan real. atau f斬(x) = (2 + 2 (-x族 + x + 2))/(x - 1) jika x diambil limit mendekati 1, maka lim (2 + 2 (-x族 + x + 2))/(x - 1) = x1 karena fungsi harus memetakan dengan tepat setiap anggota himpunan f斬(x), maka dari bentuk f斬(x) di atas daerah asal f斬(x) dipenuhi oleh setiap real bilangan x kecuali di x = 1 f(x) = (x族 + 4x)/(x族 + 2) mungkin yang dimaksud soalnya adalah mencari rentang nilai f(x) artinya mencari interval f(x) diantara nilai maksimum dan minimumnya. f'(x) = -(4(x - 2)(x + 1))/(x族 + 2)族 f''(x) = (4(2x続 - 3x族 - 12x + 2))/(x族 + 2)nilai maksimum diperoleh jika f'(x) = -(4(x - 2)(x + 1))/(x族 + 2)族 = 0 x = -1 atau x = 2 dan f''(x) < 0 f''(2) = -1/3 < 0 f(2) = 2 dan nilai minimum diperoleh jika f'(x) = 0 f''(-1) = 4/3 > 0 f(-1) = -1 kesimpulannya : -1 f(x) 2 26. Jika diketahui sebuah barisan a, b, c, . . dengan 1/a, 1/b, 1/c, . . . barisan aritmatika maka nilai 1/a + 1/c adalah . . . Jawaban:
  • 9. 3x + 1< 2x - 6 (3x + 1)族 < 2(x - 6)族 7 x族 + 30x - 71 < 0 himpunan penyelesaian = {x| -13 < x < 11/5 , x } 27. Interval penyelesaian pertidaksamaan 3x + 1<2x - 6adalah . . . Jawaban: b - a = c - b. . . . . . . . . . . (pers 1) 1/b - 1/a = 1/c - 1/b (a - b)/(ab) = (b - c)/(bc). . . . . . . . . . . (pers 2) substitusikan persamaan 1 ke 2, 1/ab - 1/bc = 0 (1/b)(1/a - 1/c) = 0 (c - a)/ac = 0 a=c b0 a0 c0 dari pers 1, b-a=c-b b-a=a-b 2a = 2b a=b=c sehingga 1/a + 1/c = 1/b + 1/b = 2/b 28. Keliling suatu persegi panjang adalah 40 cm. Jika panjangnya 10 cm lebih dari lebarnya, maka model matematikanya adalah... Jawaban: Keliling = 2 x ( P + L ) 40 = 2 x ( 10+L + L) 40 = 2 x (10 + 2L) 20 = 10 + 2L 2L = 10 L=5
  • 10. P = 10 + L P = 10 + 5 P = 15 Jadi : 2 (p+l)= 40 ; p-l = 10 29. Fungsi f pd R ditentukan dgn rumus f(x) = mx + n dgn m, n bilangan real. Jika diket f(3) = 16 dan f(-2) = -4. Tentukan rumus fungsi f tsb? Jawaban: f(x)=mx+n f(3) = 3m + n 16 = 3m + n f(-2) = -2m + n -4 = -2m + n 16=3m+n -4=-2m+n ------------------ - 20 = m 16 = 60 + n n= - 44 f(x) = mx +n f(x)= 20 x 44 30 Tentukan himpunan penyelesaian dari x + 2/3y = 2 dan 4/3x + y = 4 Jawaban: x+ 2/3y =2 ------------------ kali 3 ( saya asumsikan soal anda 2/3*Y bukan 2:3Y) 3x + 2y =6 4/3*x +y = 4 ----------------- kalikan 3 4 x + 3 y = 12 3x+2y=6 ----> kalikan 3 -----> 9x+6y=18 4x +3y=12 --> kalikan 2 -----> 8x+6y=24 -------------------------------------- - X = -6 4/3 *x+y =4 4/3*-6 +y =4 -8 + y=4
  • 11. Y= 4+8 Y= 12 Himpunan Penyelesaiannya : { -6, 12 } 31. agar (a-2)x^2-2(2a-3)x+5a-6>0 untuk setiap x, maka a memenuhi... Jawaban: syarat pertama: (a-2) > 0 a>2 syarat kedua, D<0 b族 - 4ac < 0 [-2(2a-3)]族 - 4(a-2)(5a-6) < 0 -4(a-1)(a-3) < 0 (a-1)(a-3) > 0 a < 1 atau a > 3 irisan dari syarat pertama dan kedua adalah a > 3 32. garis y= -x-3 menyinggung parabola y^2-2y+px=15. absis puncak parabola adalah.. Jawaban: y= -x-3 ...(1) y^2-2y+px=15 .... (2) substitusi persamaan (1) ke (2) ( -x-3)^2 - 2(-x-3) + px = 15 x^2 + 6x + 9 + 2x + 6 + px - 15 = 0 x^2 + ( p+8)x = 0 dua kurva menyinggung artinya D = 0 (p+8)^2 - 4*1*0 = 0 p = -8 y^2-2y+px=15 y^2 - 2y -8x = 15 8x = y^2 - 2y - 15 x = 1/8 y^2 - 1/4y - 15/8 ordinat puncak parabola y = -b/2a y = -(-1/4) / (2* 1/8) y=1
  • 12. x = 1/8 y^2 - 1/4y - 15/8 x = 1/8* 1^2 - 1/4 * 1 - 15/8 x = -2 33.Nilai maksimumnya 3 untuk x=1 & grafiknya mlalui titik (3,1) memotong di sumbu Y di titik... Jawaban: Rumus fungsi kuadrat : ax^2 + bx + c Rumus persamaan sumbu simetri : x = -b/2a >> 1 = -b / 2a >> -b = 2a >> b = -2a lalu substitusikan ke fungsi kuadrat f (x) = ax^2 + bx + c >>>= ax^2 + (-2a)x + c >>>= ax^2 - 2ax + c untuk x = 1 , mempunyai nilai maksimum 3 f (x) = ax^2 - 2ax + c f (1) = a - 2a + c >>>= -a + c > 3 = -a + c............................(persamaan 1) Melalui titik (3, 1) f (x) = ax^2 - 2ax + c f (3) = a (3)^2 - 2 a (3) + c >>>= 9a - 6a + c > 1 = 3a + c ..........................(persamaan 2) Dari 2 persamaan tsb , -a + c = 3 ..............*3 3a + c = 1............ ..*1, sehingga -3a + 3c = 9
  • 13. 3a + c = 1 -------------------- + >>> 4c = 10 >>> c = 10/4 >>>>>> = 2 1/2 Jadi memotong di sb. Y di titik ( 0 , 2 1/2) 34. f(x)= -x^+3 -x^= -x pangkat 2 tentukan: a. Titik potong dengan sumbu X b. Titik potong dengan sumbu Y c. Titik puncak Jawaban: f(x) = -x族 + 3 y = -x族 + 3 a. Titik potong dengan sumbu x, berarti y = 0 y = -x族 + 3 0 = -x族 + 3 x族 = 3 x = 賊3 (0,3),(0,-3) b. Titik potong dengan sumbu y, berarti x = 0 y = -x族 + 3 y=3 (0,3) c. Titik puncak y = -x族 + 3 a = -1 b = 0 c = 3 x = -b/2a x = -0/2(-1) x=0 y = -(0)族 + 3 y=3 (0,3)
  • 14. 35.Diketahui fungsi kuadrat f(x) = 2x2 (2x kuadrat) + 5x + 2a + 3 melalui titik A (1, 14). Tentukan nilai a