ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Low Voltage Dropout Regulator
Goal:
Design a voltage regulator to
provide an output voltage of 3.3V
For the calculations we assume the
following constants:
- Pass transistor current = 1ma
- Vout = 3.3V
- Dropout voltage =
- VDD=5V
-
Calculations:
- Calculation of a range of Vbias1
1. To find Ibias1:
From the desired a photodiode range, the minimum
value of Ibias1:
VGS3
=Vphmin
Ibias1 = ? K1(W/L)3
(VGS3
-VTHN
)2
= ? * 50 * 10-6 A/V2
*
3?m/0.6?m * (0.8V ¨C 0.617)2
= 4.186?A =4?A
The maximum value of Ibias1:
Ibias1 = ? K1(W/L)3
(VGS3
-VTHN
)2
= ? * 50 * 10-6 A/V2
*
3?m/0.6?m * (3.0V ¨C 0.617)2
= 0.7mA
Calculations:
- Calculation of a range of Vbias1
2. To find Vbias1:
Next we find the value of Vbias1 given by
Vbias1
= VDD
¨C VGS0
= VDD
- ¡Ì[(2Ibias1)/(K2
(W/L)0
] ¨C
VTHp
Vbias1
= VDD
¨C VGS0
= VDD
- ¡Ì[
(2Ibias1)/(K2
(W/L)0
] ¨C VTHp
p
The maximum value of Vbias1:
Vbias1(max) = 5V - ¡Ì[(2*4?A)/(19.1?A/V2*
20?m/0.6?m)] ¨C 0.915V =1.026 = 4V
The minimum value of Vbias1:
Vbias1(min) = VDD
¨C VGS0
= 5V- ¡Ì[(2*0.7*10-3
)/25*
10-6
/V2 * 20?m/0.6?m) ¨C 0.915V = 2.8V
Calculations:
- Calculation of sizes of the transistors M5, M4
1. To determine W5
From requirement to keep M5 in saturation
region:
VTH
¡ÜVGS5
= Vbias1(min) + VTHp
¨C Vph
(max) =
2.8V +0.9V ¨C 3.0V = 0.7V
W5 = (2InL5
)/(K1
(VGS5
-VTHN
)2
) = (2 * 1.2?A *
0.6?m)/(50?A/V2
* (0.7V ¨C 0.617V)2
) = 4?m
Calculations:
- Calculation of sizes of the transistors M5, M4
2. To determine W4
VDS4
¡ÝVGS4
¨C VTHN
VDS4
= Vph
(min) = 0.8V
Assumed VGS4
= 0.75V
W4 = (2InL4
)/(K1
(VGS4
-VTHN
)2
) = (2 * 1.2?A *
0.6?m)/(50?A/V2
* (0.75V ¨C 0.617V)2
) = 1.60?m
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
1. To find VGS
for M1, M2, M7
VGS1
= VDS1
= VGS2
= VGS1
= ¡Ì[(2Iout)/(K2
(W/L)2,7
] + VTHp
= ¡Ì(2 *
1.2?A)/(25?A/V2
* (20/2.4)) + 0.915V = 0.107V + 0.915V = 1V
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
2. To find VDS
for current mirror:
Next we find VDS2
and VDS7
(which are the same in value)
VDS2,7
= VDD
¨C VDS6
= VDD
- ¡Ì[(2Iout)/(K1
(W/L)6
] - VTHN
=
5V - ¡Ì(2 * 1.2?A)/(50?A/V2
* (1.5/8.55)) - 0.617V = 3.85V
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
3. To determine W1:
Finally, we calculate the size of transistor M1. It's required that Iin =
Iout. Consequently, the current conveyor ought to have I1 = I2,7.
Assuming L1= L2,7:
W1/L1* (1 + ?pDS2,7) = W2,7/L2,7(1 + ?pDS2,7)
W1 = 2(1 + ?pDS2,7)/(1 + ?pDS1)
W1 = (20?m*(1+0.2*3.85V)/(1+0.2*1V) = 29.5?m
Summary of Transistor Sizes:
- Summary of calculated transistor sizes vs the
transistor simulation sizes
TransistTor Calculated Size Actual Size Used
Width(?m) Length(?m) Width(?m) Length(?m)
M1 100 0.6 19.55 0.6
M2 100 0.6 21.3 2.4
M3 20 0.6 19.55 0.6
M4 20 0.6 3 0.6
M5 300 0.6 3 1.5
Final Schematic
- Test Schematic
- Test Schematic
Test Schematic
- Pre-Layout Simulation
- Pre-Layout Simulation
PRE-LAYOUT DC INPUT TEST
- Pre-Layout Simulation- Pre-Layout Simulation
PRE-LAYOUT PHASE AND GAIN
LDO LAYOUT
- Post-Layout Simulation
POST LAYOUT DC FIXED INPUT
- Post-Layout Simulation
POST LAYOUT GAIN AND PHASE

More Related Content

Ldo project

  • 2. Goal: Design a voltage regulator to provide an output voltage of 3.3V
  • 3. For the calculations we assume the following constants: - Pass transistor current = 1ma - Vout = 3.3V - Dropout voltage = - VDD=5V -
  • 4. Calculations: - Calculation of a range of Vbias1 1. To find Ibias1: From the desired a photodiode range, the minimum value of Ibias1: VGS3 =Vphmin Ibias1 = ? K1(W/L)3 (VGS3 -VTHN )2 = ? * 50 * 10-6 A/V2 * 3?m/0.6?m * (0.8V ¨C 0.617)2 = 4.186?A =4?A The maximum value of Ibias1: Ibias1 = ? K1(W/L)3 (VGS3 -VTHN )2 = ? * 50 * 10-6 A/V2 * 3?m/0.6?m * (3.0V ¨C 0.617)2 = 0.7mA
  • 5. Calculations: - Calculation of a range of Vbias1 2. To find Vbias1: Next we find the value of Vbias1 given by Vbias1 = VDD ¨C VGS0 = VDD - ¡Ì[(2Ibias1)/(K2 (W/L)0 ] ¨C VTHp Vbias1 = VDD ¨C VGS0 = VDD - ¡Ì[ (2Ibias1)/(K2 (W/L)0 ] ¨C VTHp p The maximum value of Vbias1: Vbias1(max) = 5V - ¡Ì[(2*4?A)/(19.1?A/V2* 20?m/0.6?m)] ¨C 0.915V =1.026 = 4V The minimum value of Vbias1: Vbias1(min) = VDD ¨C VGS0 = 5V- ¡Ì[(2*0.7*10-3 )/25* 10-6 /V2 * 20?m/0.6?m) ¨C 0.915V = 2.8V
  • 6. Calculations: - Calculation of sizes of the transistors M5, M4 1. To determine W5 From requirement to keep M5 in saturation region: VTH ¡ÜVGS5 = Vbias1(min) + VTHp ¨C Vph (max) = 2.8V +0.9V ¨C 3.0V = 0.7V W5 = (2InL5 )/(K1 (VGS5 -VTHN )2 ) = (2 * 1.2?A * 0.6?m)/(50?A/V2 * (0.7V ¨C 0.617V)2 ) = 4?m
  • 7. Calculations: - Calculation of sizes of the transistors M5, M4 2. To determine W4 VDS4 ¡ÝVGS4 ¨C VTHN VDS4 = Vph (min) = 0.8V Assumed VGS4 = 0.75V W4 = (2InL4 )/(K1 (VGS4 -VTHN )2 ) = (2 * 1.2?A * 0.6?m)/(50?A/V2 * (0.75V ¨C 0.617V)2 ) = 1.60?m
  • 8. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 1. To find VGS for M1, M2, M7 VGS1 = VDS1 = VGS2 = VGS1 = ¡Ì[(2Iout)/(K2 (W/L)2,7 ] + VTHp = ¡Ì(2 * 1.2?A)/(25?A/V2 * (20/2.4)) + 0.915V = 0.107V + 0.915V = 1V
  • 9. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 2. To find VDS for current mirror: Next we find VDS2 and VDS7 (which are the same in value) VDS2,7 = VDD ¨C VDS6 = VDD - ¡Ì[(2Iout)/(K1 (W/L)6 ] - VTHN = 5V - ¡Ì(2 * 1.2?A)/(50?A/V2 * (1.5/8.55)) - 0.617V = 3.85V
  • 10. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 3. To determine W1: Finally, we calculate the size of transistor M1. It's required that Iin = Iout. Consequently, the current conveyor ought to have I1 = I2,7. Assuming L1= L2,7: W1/L1* (1 + ?pDS2,7) = W2,7/L2,7(1 + ?pDS2,7) W1 = 2(1 + ?pDS2,7)/(1 + ?pDS1) W1 = (20?m*(1+0.2*3.85V)/(1+0.2*1V) = 29.5?m
  • 11. Summary of Transistor Sizes: - Summary of calculated transistor sizes vs the transistor simulation sizes TransistTor Calculated Size Actual Size Used Width(?m) Length(?m) Width(?m) Length(?m) M1 100 0.6 19.55 0.6 M2 100 0.6 21.3 2.4 M3 20 0.6 19.55 0.6 M4 20 0.6 3 0.6 M5 300 0.6 3 1.5
  • 13. - Test Schematic - Test Schematic Test Schematic
  • 14. - Pre-Layout Simulation - Pre-Layout Simulation PRE-LAYOUT DC INPUT TEST
  • 15. - Pre-Layout Simulation- Pre-Layout Simulation PRE-LAYOUT PHASE AND GAIN
  • 17. - Post-Layout Simulation POST LAYOUT DC FIXED INPUT
  • 18. - Post-Layout Simulation POST LAYOUT GAIN AND PHASE