The maximum work that can be obtained from a system initially at a higher temperature T than the environment at T0 is equal to the initial available energy minus the available energy at the final state. For an irreversible process, the actual work is always less than the maximum reversible work, with the difference equal to T0 times the entropy generation. The maximum work from a flow process is equal to the change in availability plus any heat input times 1 minus the ratio of environment to heat source temperatures.
1 of 7
Download to read offline
More Related Content
Lect 7 thermo
1. Maximum work or available energy from a system
Initially a body of mass m, is at temp T, what is the maximum work that
can be obtained out of it if the environment is at ð‘‡0 which is lower than
the body temperature T.
ð‘‡0
ð‘„â„Ž
ð‘„ð‘™
w
ð‘šð‘ ð‘£ ð‘‡
ð‘„â„Ž = ð‘šð‘ 𑣠𑇠− ð‘‡0 ; ∆ð‘ ð‘ = ð‘šð‘ ð‘£ ln
ð‘‡0
ð‘‡
∆ð‘ ð‘ ð‘¢ð‘Ÿ = ð‘„ð‘™/ð‘‡0 For max work output, ∆ð‘ ð‘ ð‘¢ð‘Ÿ + ∆ð‘ ð‘ = 0
ð‘„ð‘™ = −ð‘‡0 ð‘š ð‘ ð‘£ ln
ð‘‡0
ð‘‡
;
𑤠= ð‘„â„Ž − ð‘„ð‘™ = ð‘šð‘ 𑣠𑇠− ð‘‡0 − ð‘‡0 ð‘šð‘ ð‘£ ln
ð‘‡
ð‘‡0
𑤠= ð‘šð‘ 𑣠𑇠− ð‘‡0 − ð‘‡0 ln
ð‘‡
ð‘‡0
= ð‘ˆ1 − ð‘ˆ0 − ð‘‡0(ð‘†1 − ð‘†0)
= ð‘ˆ1 − ð‘‡0 ð‘†1 − ð‘ˆ0 − ð‘‡0 ð‘†0
= ð¹1 − ð¹0; ð‘¤â„Žð‘’ð‘Ÿð‘’ ð¹ = 𑈠− ð‘‡0 ð‘†, ð¹ ð‘–ð‘ ð‘ð‘Žð‘™ð‘™ð‘’ð‘‘ ð‘¡â„Žð‘’ ð‘Žð‘£ð‘Žð‘–ð‘™ð‘Žð‘ð‘–ð‘™ð‘–ð‘¡ð‘¦ ð‘œð‘Ÿ ð»ð‘’ð‘™ð‘šð‘œð‘™ð‘¡ð‘§ ð‘“ð‘¢ð‘›ð‘ð‘¡ð‘–ð‘œð‘›
If the system boundary expands against the atmospheric pressure p0 then F becomes:
𜑠= 𑈠− ð‘‡0 𑆠+ ð‘0 ð‘‰, ðœ‘1 − ðœ‘2 = ð‘Žð‘£ð‘Žð‘–ð‘™ð‘Žð‘ð‘™ð‘’ ð‘¤ð‘œð‘Ÿð‘˜ = 𑤠ð‘šð‘Žð‘¥
2. cm
ð‘‡0
ð‘„12
ð‘„0
w12
ð‘‡â„Ž
Control mass process when the system receives heat from a source
Maximum work or available energy
ð‘ˆ1 − ð‘ˆ2
ð‘†1 − ð‘†2
The system goes from 1-2, does work w12 and rejects heat ð‘„0
Lets us consider two situations: the body rejects heat either
reversibly or irreversibly, but it receives heat reversibly.
ð‘„12 − ð‘„0
ð‘–ð‘Ÿð‘Ÿ
= ð‘ˆ2 − ð‘ˆ1 + ð‘¤12
ð‘Žð‘ð‘¡
ð‘ ð‘”ð‘’ð‘› = ∆ð‘ ð‘ð‘š + ∆ð‘ ð‘ ð‘¢ð‘Ÿ + ∆ð‘ ð‘Ÿð‘’ð‘ > 0, for irrev process
ð‘ ð‘”ð‘’ð‘›
ð‘Ÿð‘’ð‘£
= ð‘†2 − ð‘†1 +
ð‘„0 ð‘Ÿð‘’ð‘£
ð‘‡0
−
ð‘„12
ð‘‡â„Ž
= 0 for rev process
ð‘„0
ð‘Ÿð‘’ð‘£
= −ð‘‡0 ð‘†2 − ð‘†1 +
ð‘‡0
ð‘‡â„Ž
Q12,
From 1st law for the CM we get:
ð‘„12 − ð‘„0
ð‘Ÿð‘’ð‘£
= ð‘¤12
ð‘Ÿð‘’ð‘£
+ ð‘ˆ2 − ð‘ˆ1
ð‘¤12
ð‘Ÿð‘’ð‘£
= ð‘„12 − ð‘„0
ð‘Ÿð‘’ð‘£
− ð‘ˆ2 − ð‘ˆ1
ð‘¤12
ð‘Ÿð‘’ð‘£
= ð‘„12 + ð‘‡0 ð‘†2 − ð‘†1 −
ð‘„12 ð‘‡0
ð‘‡â„Ž
− ð‘ˆ2 − ð‘ˆ1
ð‘¤12
ð‘Ÿð‘’ð‘£
= ð‘„12 1 −
ð‘‡0
ð‘‡â„Ž
+ ð‘ˆ1 − ð‘‡0 ð‘†1 − ð‘ˆ2 − ð‘‡0 ð‘†2
ð‘¤12
ð‘Ÿð‘’ð‘£
= 𑤠ð‘šð‘Žð‘¥ = ð‘„12 1 −
ð‘‡0
ð‘‡â„Ž
+ ð¹1 − ð¹2
sur
res
ð‘¤12
ð‘Žð‘ð‘¡
= ð‘„12 − ð‘„0
ð‘–ð‘Ÿð‘Ÿ
− ð‘ˆ2 − ð‘ˆ1
ð¼ = ð¼ð‘Ÿð‘Ÿ = ð‘¤12
ð‘Ÿð‘’ð‘£
− ð‘¤12
ð‘Žð‘ð‘¡
= ð‘‡0 ð‘†2 − ð‘†1 −
ð‘„12 ð‘‡0
ð‘‡â„Ž
+ ð‘„0
ð‘–ð‘Ÿð‘Ÿ
= ð‘‡0 ð‘†2 − ð‘†1 −
ð‘„12
ð‘‡â„Ž
+
ð‘„0
ð‘–ð‘Ÿð‘Ÿ
ð‘‡0
= ð‘‡0(∆ð‘ ð‘ð‘š + ∆ð‘ ð‘Ÿð‘’ð‘ + ∆ð‘ ð‘ ð‘¢ð‘Ÿ)
= ð‘‡0∆ð‘ ð‘¢ð‘›ð‘–ð‘£ = ð‘‡0 ð‘ ð‘”ð‘’ð‘›
Measure of irreversibility
3. NH3
100C
Example problem: 1kg of NH3 is contained in a spring loaded piston/cylinder
as saturated liquid at -20C. Heat is added from a reservoir
at 100C until a final state of 800kpa, 70C is reached. Find
the work, heat transfer, and entropy generation assuming
the process to be internally reversible.
p1=pressure(r717,t=-20,x=0)
v1=volume(r717,t=-20,x=0)
u1=intenergy(r717,t=-20,x=0)
s1=entropy(r717,t=-20,x=0)
v2=volume(r717,p=800,t=70)
u2=intenergy(r717,t=70,p=800)
s2=entropy(r717,t=70,p=800)
w12=(800+p1)*.5*(v2-v1)
q12=w12+u2-u1
s_gen+q12/373=s2-s1
4. Maximum work in a flow process
1 2
w
ð‘š
ð‘š
q
ð‘‡â„Ž
ð‘‡0ð‘ž0,
Objective: to find the maximum work for the
Case shown in picture
1st Law for the CV: ð‘š â„Ž1 +
ð‘£1
2
2
+ ð‘”ð‘§1 + 𑞠− ð‘ž0 = ð‘š â„Ž2 +
ð‘£2
2
2
+ gz2 + w
ð‘šð‘ 1 +
ð‘ž
ð‘‡â„Ž
−
ð‘ž0
ð‘‡0
+ ð‘ ð‘”ð‘’ð‘› = ð‘šð‘ 2, ð‘ ð‘”ð‘’ð‘› = 0, ð‘“ð‘œð‘Ÿ 𑤠ð‘¡ð‘œ ð‘ð‘’ ð‘šð‘Žð‘¥2nd Law for the CV
ð‘š ð‘ 1 − ð‘ 2 +
ð‘ž
ð‘‡â„Ž
=
ð‘ž0
ð‘‡0
 ð‘ž0 = ð‘š ð‘ 1 − ð‘ 2 ð‘‡0 +
ð‘žð‘‡0
ð‘‡â„Ž
(1)
(2)
Now use eqn (3) in (1) to obtain max work as:
(3)
𑤠ð‘šð‘Žð‘¥ = ð‘š{ â„Ž1 − ð‘‡0 ð‘ 1 − â„Ž2 − ð‘‡0 ð‘ 2 +
ð‘£1
2
− ð‘£2
2
2
+ ð‘” ð‘§1 − ð‘§2 } + ð‘ž 1 −
ð‘‡0
ð‘‡â„Ž
ï¹1 = h − T0s1 +
v1
2
2
+ gz1; Keenan function
𑤠ð‘šð‘Žð‘¥ = ð‘š ï¹1 − ï¹2 + ð‘ž 1 −
ð‘‡0
ð‘‡â„Ž
Second law efficiency: 𑤠ð‘Žð‘ð‘¡/𑤠ð‘šð‘Žð‘¥
= 𑤠ð‘Žð‘ð‘¡/(ï¹ð‘– − ï¹ ð‘’)
5. T
S
1
2
2s
P=p1
P=p2
(â„Ž1−ℎ2)/(â„Ž1 − â„Ž2ð‘ ) = ï¨_ð‘–ð‘ ð‘’ð‘›, ð‘¡ð‘¢ð‘Ÿ
For the case of a turbine expansion
P=p2
1
2s
2
T
S
P=p1
For the case of a compressor
(â„Ž1−ℎ2ð‘ )/(â„Ž1 − â„Ž2) = ï¨_ð‘–ð‘ ð‘’ð‘›, ð‘ð‘œð‘šð‘
An insulated steam turbine, receives 30kg/s of steam at 3 Mpa, 350C . In the
turbine where the pressure is 500kpa, steam is beld off at the rate of 5kg/s, for
processing equipment. The temperature of this steam is 200C. The balance of
the steam leaves the turbine at 15kpa, 90% quality. Find the availability per kg
of steam at the entry, the isentropic efficiency and the second law efficiency of
the turbine. What is the actual work output of the turbine Ans: 1110 kj/kg,
eta_isen=.7975, eta_2nd=.8176, w_act=20144 kw
Example problem