The slides present our approach to represent legal documents as Linked Data. We extract various kinds of structured data from semi-structured legal documents with natural language processing techniques and represent them in RDF with respect to Linked Data principles. We show how the resulting database, which consists of various kinds of legal documents in RDF linked to other kinds of data, can be queried using SPARQL
1 of 64
Download to read offline
More Related Content
Linked Data for Czech Legislation - 2nd year of our project
1. Linked Data for Czech Legislation
Martin Neask箪, Ph.D.
necasky@xrg.cz
Matematicko-fyzik叩ln鱈 fakulta Univerzity Karlovy
http://www.xrg.cz
http://www.opendata.cz
2. Project Motivation
There are many documents/entities published by
public bodies which refer to particular legal acts or
their parts.
People need to find which documents/entities refer
to what acts or their parts.
Acts
Court decisions Inspection results
AgendaPermissions
3. Project Motivation
Legal acts define concepts and relationships between
them.
People need to find relationships of a given concept
with other concepts. They also need to refer to that
concept from their documents/entities.
Accounting
entity
hasDefinition
hasObligation
Accounting Act
5. Project Objectives
1. Find a common data model (language) which
enables to
represent all this data
publish the data on the web in a standard way so
that it can be linked from other data sources on
the web
2. Get consolidated expressions of Czech acts
We can buy them or reconstruct them on our
own.
We reconstructed them! (great thanks to Charles
University student Karel Kl鱈ma)
6. Project Objectives
3. Use machine-learning methods for recognizing
references to acts which appear in documents.
Currently, we have recognition in court decisions (by
our Ph.D. student Vincent Kr鱈転)
4. Use NLP methods to extract concepts and
relationships between them from consolidated
expressions of Czech acts, with the following
constraints
Only from in a specified domain
Initial list of important concepts constructed
manually as an input
7. UFAL + KSI (+ students) cooperation
Gathering data (code of law, court decisions, .)
Consolidated acts
Extraction of act
references in text
Extraction of
concepts and
relationships
Representation in a common data model
Linking with other data sources
Application development Application development
9. Common Data Model Linked Data
RDF + Linked Data principles
1. Use URLs to identify your things.
2. When someone looks up your URL of an entity,
provide useful data about the entity.
3. Use RDF as a data format, enable querying with
SPARQL.
4. Provide links to other related things as part of
the provided data, also in RDF.
10. Common Data Model - URLs
Act no. 235/2004 (Value Added Tax Act)
http://linked.opendata.cz/resource/legislation/cz/act/2004/235-2004
When a client requests this URL (via HTTP
protocol), data about Act no. 235/2004 is
provided in RDF
There are various serialization formats of RDF data
model; provided serialization format depends on
the request (content negotiation is applied)
11. Common Data Model - SPARQL
All sections of Act no. 235/2004
PREFIX frbr: <http://purl.org/vocab/frbr/core#>
SELECT DISTINCT ?section
WHERE {
?section frbr:partOf+
<http://linked.opendata.cz/resource/legislation/cz/act/2004/235-2004> ;
a frbr:Work .
}
ORDER BY ?section
12. Common Data Model - SPARQL
The number of consolidated versions of
particular sections of Act no. 235/2004?
PREFIX frbr: <http://purl.org/vocab/frbr/core#>
PREFIX dcterms: <http://purl.org/dc/terms/>
SELECT ?section (COUNT(DISTINCT(?text)) AS ?cnt)
WHERE {
?expression frbr:realizationOf ?section ;
dcterms:description ?text .
?section frbr:partOf+
<http://linked.opendata.cz/resource/legislation/cz/act/2004/235-2004>
}
GROUP BY ?section
ORDER BY DESC(?cnt)
13. Common Data Model - SPARQL
Are there any court decisions citing Act no.
235/2004 or any of its sections?
PREFIX frbr: <http://purl.org/vocab/frbr/core#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sao: <http://salt.semanticauthoring.org/ontologies/sao#>
PREFIX sdo: <http://salt.semanticauthoring.org/ontologies/sdo#>
SELECT DISTINCT ?decision ?decisionTitle ?sectionOrAct
WHERE {
?annotation sao:hasTopic ?sectionOrAct .
?sectionOrAct frbr:partOf*
<http://linked.opendata.cz/resource/legislation/cz/act/2004/235-2004> .
?decisionExpr
sdo:hasSection/sdo:hasParagraph/sdo:hasTextChunk/sdo:hasAnnotation ?annotation ;
frbr:realizationOf ?decision .
?decision dcterms:title ?decisionTitle .
}
ORDER BY ?sectionOrAct
14. Common Data Model - SPARQL
What kinds of entities/documents are linked to
Act no. 235/2004?
SELECT DISTINCT ?p ?t
WHERE {
?s ?p <http://linked.opendata.cz/resource/legislation/cz/act/2004/235-2004> ;
a ?t .
}
16. Judik叩ty
Representation of Concepts and
Relationships
K n叩vrhu je navrhovatel povinen pipojit listiny, kter箪ch se v n叩vrhu dovol叩v叩 .
K n叩vrhu je navrhovatel povinen pipojit listiny, kter箪ch se v n叩vrhu dovol叩v叩 .
subject predicate object
navrhovatel povinen pipojit listiny, kter箪ch se v n叩vrhu dovol叩v叩
Navrhovatel
(dle z叩k. NN/YYYY)
lingv:TextChunk lingv:TextChunk lingv:TextChunk
lexc:Concept
lingv:subject lingv:object
Pipojit listiny, kter箪ch se
v n叩vrhu dovol叩v叩
(dle z叩k. NN/YYYY)
lexc:Concept
lexc:hasObligation
lexc:hasDefinition
extracted definition
text
lexc:hasObligation
(dle z叩k.
NN/YYYY)
lexc:Concept
則 C
Z叩kon . NN/YYYY
frbr:partOf
frbr:partOf
Judik叩ty
17. Legal Concepts Ontology
Each extracted concept is represented as an
instance of class lexc:Concept.
lexc:Concept
lexc:ConceptVersionfrbr:Expression
lex:Act
frbr:partOf
frbr:partOf
lexc:hasObligation,
lexc:hasRight
rdfs:Literal
lexc:hasDefinition
23. Next steps
Improve NLP extraction (see next part of the
presentation) queries
Better linking of concepts to
particular sections of acts
to other data sources (e.g., life situations, agendas of
public bodies, fines imposed by public bodies, etc.)
Develop web applications which
enable users to work with the extracted concepts and
relationships
enable to explore links between extracted concepts
and other data sources
24. Vincent Kr鱈転, Barbora Hladk叩
RExtractor
Entity Relation Extraction
from Unstructured Texts
Intelligent library (INTLIB, TA02010182)
Seminar of formal linguistics, 2014-05-12
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University in Prague
Czech Republic
{kriz,hladka}@ufal.mff.cuni.cz
http://ufal.mff.cuni.cz/intlib
25. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Motivation
Typical search approaches
full-text search
metadata search
Our approach
building a knowledge base
semantic representation of documents
entities and their relations
represented in the Resource Description
Framework (RDF)
26. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Data processing workflow
30. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Entity Detection Component
Database of Entities
entities specified by domain experts
PML-TQ
http://ufal.mff.cuni.cz/tools/pml-tq
31. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Relation Extraction Component
Database of Queries
queries formulated by
domain experts
their formulation in
the form of PML-TQ
queries on
dependency trees
RDF ready output:
Subject Predicate Object
Entity hasToCreate Something
Accounting
units
create fixed items
Accounting
units
create reserves
Subject Predicate Object
Entity hasToCreate Something
Accounting
units
create fixed items
Accounting
units
create reserves
Example of user query:
accounting units' obligations
32. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Case study on legislative domain
33. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Case study on legislative domain
Legal texts
specialized texts operating in legal settings
they should transmit legal norms to their recipients
they need to be clear, explicit and precise
Sentences
simple sentences are very rare
usually long and very complex
Legal texts are generally considered very
difficult to read and understand.(Tiersma, 2010)
34. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
RExtractor Architecture
Adaptation for legislative domain
35. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Conversion component
HLAVA I
VODN USTANOVEN
則 1
Pedmt 炭pravy
Tato vyhl叩邸ka zapracov叩v叩 p鱈slu邸n辿 pedpisy Evropsk辿 unie a upravuje:
a) zp哲sob vymezen鱈 hydrogeologick箪ch rajon哲, vymezen鱈 炭tvar哲 podzemn鱈ch vod,
b) zp哲sob hodnocen鱈 stavu podzemn鱈ch vod a
c) n叩le転itosti program哲 zji邸泥ov叩n鱈 a hodnocen鱈 stavu podzemn鱈ch vod.
36. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Conversion component
HLAVA I
VODN USTANOVEN
則 1
Pedmt 炭pravy
Tato vyhl叩邸ka zapracov叩v叩 p鱈slu邸n辿 pedpisy Evropsk辿 unie a upravuje:
a) zp哲sob vymezen鱈 hydrogeologick箪ch rajon哲, vymezen鱈 炭tvar哲 podzemn鱈ch vod,
b) zp哲sob hodnocen鱈 stavu podzemn鱈ch vod a
c) n叩le転itosti program哲 zji邸泥ov叩n鱈 a hodnocen鱈 stavu podzemn鱈ch vod.
<head id="11" label="HLAVA I">
<title>VODN USTANOVEN</title>
<section id="12" label="則 1">
<title>Pedmt 炭pravy</title>
<text>Tato vyhl叩邸ka zapracov叩v叩 p鱈slu邸n辿
pedpisy Evropsk辿 unie a upravuje:</text>
<section id="13" label="a)">
<text>zp哲sob vymezen鱈 hydrogeologick箪ch rajon哲,
vymezen鱈 炭tvar哲 podzemn鱈ch vod,</text>
</section>
<section id="14" label="b)">
<text>zp哲sob hodnocen鱈 stavu podzemn鱈ch vod a</text>
</section>
<section id="15" label="c)">
<text>n叩le転itosti program哲 zji邸泥ov叩n鱈 a
hodnocen鱈 stavu podzemn鱈ch vod.</text>
</section>
</section>
</head>
<head id="11" label="HLAVA I">
<title>VODN USTANOVEN</title>
<section id="12" label="則 1">
<title>Pedmt 炭pravy</title>
<text>Tato vyhl叩邸ka zapracov叩v叩 p鱈slu邸n辿
pedpisy Evropsk辿 unie a upravuje:</text>
<section id="13" label="a)">
<text>zp哲sob vymezen鱈 hydrogeologick箪ch rajon哲,
vymezen鱈 炭tvar哲 podzemn鱈ch vod,</text>
</section>
<section id="14" label="b)">
<text>zp哲sob hodnocen鱈 stavu podzemn鱈ch vod a</text>
</section>
<section id="15" label="c)">
<text>n叩le転itosti program哲 zji邸泥ov叩n鱈 a
hodnocen鱈 stavu podzemn鱈ch vod.</text>
</section>
</section>
</head>
37. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
NLP Component
Corpus of Czech legal texts (CCLT)
The Accounting Act (563/1991 Coll.)
Decree on Double-entry Accounting for
undertakers (500/2002 Coll.)
automatically parsed, then manually checked
1,133 manually annotated a-trees
35,085 tokens
Credit to Zdeka Ure邸ov叩
38. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
NLP Component
Corpus of Czech legal texts (CCLT)
enumerations and lists as one tree
manual annotation guidelines
split sentence according to formal markers
use links for dependencies between partial trees
automatic procedure merges partial annotations
into a final tree
Pipeline visualization available on-line at
ufal.mff.cuni.cz/intlib
39. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
NLP Component
Automatic parsers for Czech
trained on newspaper texts
verification whether we can use the parser
trained on newspaper texts or some
modifications are needed
MST parser Ryan McDonald, Fernando Pereira,
Kiril Ribarov, Jan Haji (2005): Non-projective
Dependency Parsing using Spanning Tree
Algorithms. In: Proceedings of HLT/EMNLP,
Vancouver, British Columbia.
40. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
NLP Component
Sentence splitting
We substitute long lists and enumerations by
several shorter sentences
Original sentence New sentences
(2) Veejn箪m rozpotem se pro 炭ely tohoto
z叩kona rozum鱈
a) st叩tn鱈 rozpoet
b) rozpoet st叩tn鱈ho fondu,
c) rozpoet Evropsk辿 unie, nebo
d) rozpoet, o nm転 to stanov鱈 z叩kon.
Veejn箪m rozpotem se pro 炭ely tohoto
z叩kona rozum鱈 st叩tn鱈 rozpoet.
Veejn箪m rozpotem se pro 炭ely tohoto
z叩kona rozum鱈 rozpoet st叩tn鱈ho fondu.
Veejn箪m rozpotem se pro 炭ely tohoto
z叩kona rozum鱈 rozpoet Evropsk辿 unie.
Veejn箪m rozpotem se pro 炭ely tohoto
z叩kona rozum鱈 rozpoet, o nm転 to stanov鱈
z叩kon.
Original sentence New sentences
(2) Veejn箪m rozpotem se pro 炭ely tohoto
z叩kona rozum鱈
a) st叩tn鱈 rozpoet
b) rozpoet st叩tn鱈ho fondu,
c) rozpoet Evropsk辿 unie, nebo
d) rozpoet, o nm転 to stanov鱈 z叩kon.
Veejn箪m rozpotem se pro 炭ely tohoto
z叩kona rozum鱈 st叩tn鱈 rozpoet.
Veejn箪m rozpotem se pro 炭ely tohoto
z叩kona rozum鱈 rozpoet st叩tn鱈ho fondu.
Veejn箪m rozpotem se pro 炭ely tohoto
z叩kona rozum鱈 rozpoet Evropsk辿 unie.
Veejn箪m rozpotem se pro 炭ely tohoto
z叩kona rozum鱈 rozpoet, o nm転 to stanov鱈
z叩kon.
41. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
NLP Component
Re-tokenization
etn鱈 jednotky tvo鱈 opravn辿 polo転ky podle ustanoven鱈 則
16, 26, 31, 55 a 57
a neoceuj鱈 majetek podle 則 27, 則 14, 39, 則 51 a転 55, 則 58,
60 a 69
42. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
NLP Component
Re-tokenization
etn鱈 jednotky tvo鱈 opravn辿 polo転ky podle ustanoven鱈 則 16, 26, 31, 55 a 57
a neoceuj鱈 majetek podle 則 27, 則 14, 39, 則 51 a転 55, 則 58, 60 a 69
43. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Entity Detection Component
Entities in CCLT
Accounting subdomain
Entities manually annotated by Sysnet, Ltd.
Decree on Double-entry Accounting for
undertakers (500/2002 Coll.)
Sample
44. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Entity Detection Component
Initializing DBE with entities from CCLT
Each (unique) entity parsed automatically by MST
Automatic procedure takes an entity dependency
tree and creates a PML-TQ query
45. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Entity Detection Component
Experiment
identify entities in gold standard trees in CCLT
with re-tokenized tokens and (very) long sentences
identify entities in trees created by MST
with re-tokenized tokens and split sentences
Results
high False positives
automatic parser has low influence on detection
Parsing method Extracted TP FP FN Precision Recall
Manual 16428 9549 6879 628 58.1 93.8
Automatic 16160 9278 6882 838 57.4 91.7
Parsing method Extracted TP FP FN Precision Recall
Manual 16428 9549 6879 628 58.1 93.8
Automatic 16160 9278 6882 838 57.4 91.7
46. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Relation Extraction Component
Types of relations
Definitions (D) entities are defined or explained
N叩hradn鱈m ubytov叩n鱈m se rozum鱈 byt o jedn辿 m鱈stnosti nebo pokoj
ve svobod叩rn nebo podn叩jem v za鱈zen辿 nebo neza鱈zen辿 叩sti
bytu jin辿ho n叩jemce.
Obligations (O) entity is obligated to do
something
K n叩vrhu je navrhovatel povinen pipojit listiny , kter箪ch se v n叩vrhu
dovol叩v叩.
Rights (R) entity has right to do something
Nabyvatel m哲転e uplatovat n叩rok z odpovdnosti za vady u soudu
jen tehdy , vytkl-li vady bez zbyten辿ho odkladu po t辿 , kdy ml
mo転nost vc prohl辿dnout .
47. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Relation Extraction Component
Manual design of queries
Strategy: cover maximum of relations with
minimum of queries
tree query expert
observes typical constructions for given type of
relation
designs query for the most frequent construction
goes through matches and redesign query if
needed
48. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Relation Extraction Component
Query design & evaluation on CCLT
Query design
on The Accounting Act (563/1991 Coll.)
5 queries for Definitions
4 queries for Rights
2 queries for Obligation
Evaluation
on Decree on Double-entry Accounting for
undertakers (500/2002 Coll.)
50. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Relation Extraction Component
Error analysis
Results
errors in automatic parsing
query design
Error # of errors Ratio
Parser 145 59.7%
Query 93 38.3%
Entity 5 2.1%
Error # of errors Ratio
Parser 145 59.7%
Query 93 38.3%
Entity 5 2.1%
51. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Relation Extraction Component
Experiment with more data
28 laws from accounting subdomain
27,808 sentences
745,137 tokens
D R O
D1
36 R1
240 O1
183
D2
287 R2
470 O2
37
D3
35 R3
127
D4
466 R4
6
D5
46
Total 1580 Total 843 Total 220
D R O
D1
36 R1
240 O1
183
D2
287 R2
470 O2
37
D3
35 R3
127
D4
466 R4
6
D5
46
Total 1580 Total 843 Total 220
52. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Relation Extraction Component
Query example - Definition
N叩hradn鱈m ubytov叩n鱈m se rozum鱈 byt o jedn辿 m鱈stnosti nebo pokoj ve
svobod叩rn nebo podn叩jem v za鱈zen辿 nebo neza鱈zen辿 叩sti bytu
jin辿ho n叩jemce .
53. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Relation Extraction Component
Query example Obligation
K n叩vrhu je navrhovatel povinen pipojit listiny , kter箪ch se v n叩vrhu
dovol叩v叩 .
54. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Relation Extraction Component
Query example Right
Nabyvatel m哲転e uplatovat n叩rok z odpovdnosti za vady u soudu jen
tehdy , vytkl-li vady bez zbyten辿ho odkladu po t辿 , kdy ml mo転nost vc
prohl辿dnout .
55. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Future Work
Legislative domain
Parsing
evaluation and adaptation
Entity detection
automatic entity detection based on
sample of entities annotated manually
Relation extraction
automatic query design
56. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Case study on environmental domain
57. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Case study on environmental domain
What are the environmental consequences of
a project?
Environmental Impact Assessment considers
the environmental impacts whether or not to
proceed with a project.
In the Czech Republic, CENIA administers the
information system EIA.
58. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
EIA system
59. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Example
Amazon's plan to build a distribution center in Brno,
CR (no, no, no, yes by Brno councilors)
May 9, 2014: a new intention posted at EIA by CTP
Invest
60. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Mining EIA documentation
Sysnet, Ltd. specified what entities and
relations to extract, e.g.
Title (Section B.I.1)
Category, type (Section B.I.1)
Capacity, size (Section B.I.2, B.I.6)
Location (Section B.I.3)
Scheduling (Section B.I.7)
...
61. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Focus on section B.I.2
Example
Vlastn鱈 are叩l bude sest叩vat z halov辿ho objektu
o plo邸e cca 96 000 m2
, kter箪 bude uvnit
rozdlen na 3 haly Pedpokl叩daj鱈 se 2 kryt叩
st叩n鱈 pro j鱈zdn鱈 kola a 1150 parkovac鱈ch st叩n鱈
pro osobn鱈 vozidla Sou叩st鱈 z叩mru je
realizace sadov箪ch 炭prav, kter叩 zahrnuje
v箪sadbu v鱈ce ne転 250 ks vzrostl箪ch strom哲
The park will consists of the hall with the area of cca 96 000
m2
that will be split into 3 halls There will be 2 roofed
bicycle parking stations and 1,150 parking slots ...
62. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Using RExtractor
queries by regular expressions
63. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
D叩le je provozov叩na produkn鱈 st叩j VKK pro 336
ks dojnic (403,2 DJ). (In addition, a reproductive barn
VKK is used for 336 cows.)
(Adj Nom)? (Noun Nom) (number) (unit) (Noun Gen)
( attribute )( entity ) (number) (unit) ( entity )
( reproductive )( barn ) (336) (pcs) ( cow )
Regular expressions
Credit to Ivana Luk邸ov叩
64. Kr鱈転, Hladk叩: RExtractor Entity Relation Extraction from Unstructured Texts SFL, 2014-05-12
Evaluation
Developers vs. users
Gold standard data vs. practical use cases
Experience vs. expectation
Scientific contribution vs. making life easier
Both l. & e. domain