ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
?
Introduction of Deep Reinforcement Learning, which was presented at domestic NLP conference.
言語処理学会第24回年次大会(NLP2018) での講演資料です。
http://www.anlp.jp/nlp2018/#tutorial
データマイニングや機械学習をやるときによく問題となる「リーケージ」を防ぐ方法について論じた論文「Leakage in Data Mining: Formulation, Detecting, and Avoidance」(Kaufman, Shachar, et al., ACM Transactions on Knowledge Discovery from Data (TKDD) 6.4 (2012): 1-21.)を解説します。
主な内容は以下のとおりです。
?過去に起きたリーケージの事例の紹介
?リーケージを防ぐための2つの考え方
?リーケージの発見
?リーケージの修正
The document summarizes recent research related to "theory of mind" in multi-agent reinforcement learning. It discusses three papers that propose methods for agents to infer the intentions of other agents by applying concepts from theory of mind:
1. The papers propose that in multi-agent reinforcement learning, being able to understand the intentions of other agents could help with cooperation and increase success rates.
2. The methods aim to estimate the intentions of other agents by modeling their beliefs and private information, using ideas from theory of mind in cognitive science. This involves inferring information about other agents that is not directly observable.
3. Bayesian inference is often used to reason about the beliefs, goals and private information of other agents based
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
?
Introduction of Deep Reinforcement Learning, which was presented at domestic NLP conference.
言語処理学会第24回年次大会(NLP2018) での講演資料です。
http://www.anlp.jp/nlp2018/#tutorial
データマイニングや機械学習をやるときによく問題となる「リーケージ」を防ぐ方法について論じた論文「Leakage in Data Mining: Formulation, Detecting, and Avoidance」(Kaufman, Shachar, et al., ACM Transactions on Knowledge Discovery from Data (TKDD) 6.4 (2012): 1-21.)を解説します。
主な内容は以下のとおりです。
?過去に起きたリーケージの事例の紹介
?リーケージを防ぐための2つの考え方
?リーケージの発見
?リーケージの修正
The document summarizes recent research related to "theory of mind" in multi-agent reinforcement learning. It discusses three papers that propose methods for agents to infer the intentions of other agents by applying concepts from theory of mind:
1. The papers propose that in multi-agent reinforcement learning, being able to understand the intentions of other agents could help with cooperation and increase success rates.
2. The methods aim to estimate the intentions of other agents by modeling their beliefs and private information, using ideas from theory of mind in cognitive science. This involves inferring information about other agents that is not directly observable.
3. Bayesian inference is often used to reason about the beliefs, goals and private information of other agents based
Thank you communication network in organization 感謝ネットワークからみる組織のコミュニケーションの形Hiroko Onari
?
感謝ネットワークからみる組織のコミュニケーションの形
Thank you communication network in organization.
Engaged employees tend to say "thank you" with the reason of the appreciation. The managers who have an excellent vocabulary motivate and inspire their subordinates.
16. 参考
● Social Simulacra: Creating Populated Prototypes for Social Computing Systems. Park et. al., UIST, 2022
● Generative Agents: Interactive Simulacra of Human Behavior. Park et. al., UIST, 2023
● Simulating Opinion Dynamics with Networks of LLM-based Agents. Chuang et. al., arXiv:2311.09618v1, 2023
● S3: Social-network Simulation System with Large Language Model-Empowered Agents. Gao et. al.,
arXiv:2307.14984v2, 2023
● Simulating Social Media Using Large Language Models to Evaluate Alternative News Feed Algorithms T?rnberg et
al., arXiv:2310.05984v1, 2023
● Large Language Model-Empowered Agents for Simulating Macroeconomic Activities. Li et. al.,
arXiv:2310.10436v1, 2023
● 役に立ったサーベイ
○ マルチエージェント(日本語) : https://speakerdeck.com/masatoto/llmmarutiezientowofu-kan-suru
○ LLM Multi-Agent Systems: Challenges and Open Problems. Han et. al., 2024
16