This document discusses functions and their properties. It provides examples of different types of functions, including quadratic, absolute value, and piecewise defined functions. It examines the domains and ranges of functions, and how the graph of a function relates to its equation. Examples are given of determining the value of functions for specific inputs, and how the graph or equation of a function changes when the variable is replaced by its opposite.
2. 2
www.tuhoc.edu.vn
htttp://tuhoc.edu.vn/blog
VD2:
= HD
x 2
f(x) 2x 3
3 x
3
2x 3 0 x 3
x 32
23 x 0
x 3
VD3:
= HD
¨C Ta c¨® x2 ¨C 2x + 3 = (x ¨C 1)2
2 1
f(x) x 2x 3
|x| 1
VD4:
= HD
0 x m ¨C 1
2x
f(x)
x m 1
VD5:
= HD
y x m 1 2x m
x m 1
x m 1 0
m
2x m 0 x
2
m 1 0
m 0m
0
2
m ¨C 1 (0 ; 2)
m 1 0 m 1
m 1 2 m 3
4. 4
www.tuhoc.edu.vn
htttp://tuhoc.edu.vn/blog
2
M(x0 ; y0) (G) x0 D v¨¤ y0 = f(x0)
x
y
x
y
O
TOPPER. Ch¨² ?
0 ; y0 y0 = f(x0)
VD6:
2 ?
= HD
2
1 = 02
O
VD7 0 ; y0 0 ; y0
y = x2
=
0 ; y0
2 ¨C mx + 2 + m khi ta c¨®:
hay2
0 0 0
y x mx 2 m 2
0 0 0
y x 2 m(1 x )
0 0
2
00 0
1 x 0 x 1
y 3y x 2
TOPPER. Ch¨² ?
y
y = c
O
c
x
1) = f(x2) x1, x2 K
x K (c l¨¤
8. 8
www.tuhoc.edu.vn
htttp://tuhoc.edu.vn/blog
D th¨¬ ¨Cx D:
VD9: 3 ¨C 4x
= HD
¨Cx v¨¤
f(¨Cx) = 2(¨Cx3) ¨C 4(¨Cx) = ¨C2x3 + 4x = ¨Cf(x).
VD10:
= HD
[¨C2 ; 2] th¨¬ ¨Cx [¨C2 ; 2] v¨¤
y f(x) 2 x 2 x
2 x 0
2 x 2
2 x 0
f( x) 2 x 2 x f(x)
TOPPER. Ch¨² ?
4
x D th¨¬ ¨Cx D v¨¤ f(¨Cx) = f(x)
x D th¨¬ ¨Cx D v¨¤ f(¨Cx) = ¨C f(x).
10. 10
www.tuhoc.edu.vn
htttp://tuhoc.edu.vn/blog
1
(a) (b) {¨C2 ; 2}
(c) x [¨C1 ; ) v¨¤ x 1 (d) x
1
[ ; 2]
2
2
; 1]
(b) f(¨C2) = ¨C5; f(¨C1) = 0; ; f(1) = 0
2 2
f( )
2 2
3
0
x m
x m 0
m 1
2x m 1 0 x
2
m 0
m 1
0
2
4
5 0 ; y0 khi ta c¨®:
hay 0 m
x0y0 + 1 = m(x0 + y0)
x0 khi:
mx 1
x m
0
0
0
mx 1
y
x m 0 0 0 0
x y my mx 1
0 0
0 0
x y 0
x y 1 0
m 1, m 1
7 v¨¤( ; 1) (1; )
8
[1; )
A
B
(b) a < 0
(2; )
C m = 1