ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Methanol and Ethanol Evaporating Flow
Mechanisms in Square and Circular
Microchannels

Laboratory of Thermofluids, Combustion and Energy Systems, LTCES
Center for Innovation, Technology and Policy Research, IN+
Instituto Superior Técnico, Technical University of Lisbon
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt
APPLICATIONS
Devices shrink in footprint and increase in functionality
keep getting hotter

Chevrolet Equinox Fuel Cell Electric Vehicle
Computers
Photovoltaics

http://alternativefuels.about.com
http://www.treehugger.com
http://onyxgreenbuilding.wordpress.com
Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

2
MOTIVATION
•

Microchannels
– etched directly into the component
• dielectric fluids

–  thermal resistances
• integrate the microchannel structure into a layer that is closer to the heat producing device. This
removes layers of material in the thermal resistance path which can significantly improve the cooling of
the heat source

•

Flow boiling
– ïƒ heat removal rates
–  pumping power
–  €€

Macrochannel Flow Pattern Maps simply fail to apply
Instabilities are prominent

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

3
EXPERIMENTAL APPARATUS

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

4
EXPERIMENTAL CONDITIONS
Properties of the fluids (Tsat, 0.1MPa)
methanol
ethanol

800

CH OH CCS
3

CH OH SCS
3

.s - 1 ]

600

521

C H OH CCS
2 5

-2

G [kg.m

542

C H OH SCS

400

2 5

542

521

200

0
0

50

100

-2

q"s [kW.m ]

CCS_543

SCS_521

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

5

150

200
MEASUREMENTS
ð‘·ð’“ð’†ð’”ð’”ð’–ð’“ð’†
40

10

8

Pressure Drop [kPa]

Pressure [kPa]

30

inlet measured pressure
20

outlet measured pressure

6

4
10
0

2

4

6

8

10
12
time [s]

14

16

18

20

0

0.5

1

1.5
Time [s]

2

2.5

3

ð‘»ð’†ð’Žð’‘ð’†ð’“ð’‚ð’•ð’–ð’“ð’†
8
400

450

380

]

6

300

.K
-2

340

h [kW.m

350

-1

360

Temperature [K]

Temperature [K]

400

320
300
280

250
0

0
2

4

6

8

10
12
time [s]

14

16

18

20

20

40

60

80

2

0

100

0

Length [mm]

20

40

60

Length [mm]

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

4

6

80

100
PRESSURE DROP
ð‘ ð‘–ð‘› = ð‘

ð‘šð‘’ð‘Žð‘ ,ð‘–ð‘›ð‘™ð‘’ð‘¡

− ∆ð‘ ð‘ð‘œð‘› − ∆ð‘ ð‘›ð»ð‘‡,ð‘–ð‘›

∆ð‘ ð»ð‘‡ = ð‘ ð‘–𑛠− ð‘ ð‘œð‘¢ð‘¡

ð‘ ð‘œð‘¢ð‘¡ = ð‘

ð‘šð‘’ð‘Žð‘ ,ð‘œð‘¢ð‘¡ð‘™ð‘’ð‘¡

+ ∆ð‘ ð‘’ð‘¥ð‘ + ∆ð‘ ð‘›ð»ð‘‡,ð‘œð‘¢ð‘¡

heated length

ð‘

ð‘ ð‘–ð‘›

ð‘šð‘’ð‘Žð‘ ,ð‘–ð‘›ð‘™ð‘’ð‘¡

∆ð‘ inlet
stagnation
chamber

∆ð‘ ð‘ð‘œð‘›
inlet
contraction

∆ð‘ ð‘›ð»ð‘‡,ð‘–ð‘›
non-heated
entrance length

∆ð‘ ð‘›ð»ð‘‡,ð‘œð‘¢ð‘¡
non-heated
exit length

single-phase
∆ð‘ ð‘ð‘œð‘› = 1 −

ð‘

ð‘ ð‘œð‘¢ð‘¡

ð‘šð‘’ð‘Žð‘ ,ð‘œð‘¢ð‘¡ð‘™ð‘’ð‘¡

∆ð‘ ð‘’ð‘¥ð‘
outlet
expansion

single-phase
ð´ ð‘ð‘ 
ð´ ð‘–ð‘ ð‘

2

+ ð¾ ð‘ð‘œð‘›

1 2
ðº ðœ—ð¿
2

∆ð‘ ð‘’ð‘¥ð‘,ð‘ ð‘“ =

ð¾ ð‘ð‘œð‘› = 0.0088𛼠2 − 0.1785𛼠+ 1.6027

1
ð¾
ðº 2 𜗠ð¿,ð‘œ
2 ð‘’ð‘¥ð‘

ð¾ ð‘’ð‘¥ð‘ = - 2 x 1.33
two-phase
∆ð‘ ð‘’ð‘¥ð‘,ð‘¡ð‘“ = ðº 2

ð´ ð‘ð‘ 
ð´ ð‘–ð‘ ð‘

ð´ ð‘ð‘ 
−1
ð´ ð‘–ð‘ ð‘

𜗠ð¿,𑜠1 − ð‘¥ ð‘’ð‘¥ð‘–ð‘¡

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

7

ð´ ð‘ð‘ 
ð´ ð‘–ð‘ ð‘

2

1−

1+

ð´ ð‘ð‘ 
ð´ ð‘–ð‘ ð‘

5
1
+ 2
ð‘‹ ð‘‰ð‘‰
ð‘‹ ð‘‰ð‘‰

∆ð‘ outlet
stagnation
chamber
TEMPERATURE
ð‘» ð’Šð’ð’ð’†ð’“

ð’˜ð’‚ð’ð’

one dimensional heat conduction

𑇠ð‘¤,ð‘–ð‘› = 𑇠ð‘¤,ð‘œð‘¢ð‘¡ −

ð‘ž "ð‘  ð´ ð‘ð‘ 
𑘠ð‘ ð‘¢ð‘Ÿ

ð‘  ð‘“ ð‘™ð‘œð‘”

ð‘ ð‘“ = 1

ð·ð‘œ
ð·ð‘–

2ðœ‹ð¿ ð»ð‘‡

ð‘  ð‘“ = 0.785

ð‘» ð’‡ð’ð’–ð’Šð’…
𑇠𑓠= 𑇠ð‘š,ð‘–ð‘› +
𑇠ð‘ ð‘Žð‘¡ = 1 −

ð¿ ð‘ ð‘Žð‘¡ =

ð‘ž "𑠠𑃠𑤠ð‘§
𑉠𜌠ð¿ ð‘ ð‘,ð¿
ð‘§
ð¿ ð»ð‘‡

𑉠𜌠ð¿ ð‘ ð‘,ð¿ 𑇠ð‘ ð‘Žð‘¡,0 − 𑇠ð‘“,ð‘–
ð‘ž "ð‘ 

ð‘ƒð‘¤

(Single-phase region)

𑇠ð‘ ð‘Žð‘¡ ð‘ƒð‘–ð‘›ð‘™ð‘’ð‘¡ +

ð¿ ð»ð‘‡

𑇠𑓠= 𑇠ð‘ ð‘Žð‘¡

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

ð‘§

8

𑇠ð‘ ð‘Žð‘¡ 𑃠ð‘œð‘¢ð‘¡ð‘™ð‘’ð‘¡

(Two-phase region)
HEAT TRANSFER COEFFICIENT

-1
-1

-2

-1

-2

-1
-1

G=662kg.m .s
G=483kg.m .s
G=303kg.m .s

-1

15

G=214kg.m .s

-2

(Two-phase region)

-2

-2

20

havg [kW.m .K ]

𑇠𑓠= 𑇠ð‘ ð‘Žð‘¡

squareSCS_521, C2H5OH
521mm, ethanol

-2

ð‘ž "ð‘ 
â„Ž=
𑇠ð‘¤,ð‘–𑛠− 𑇠ð‘“

G=125kg.m .s

10
5
0

60

90
120
-2
q"s [kW.m ]

150

ð‘ž "ð‘  =

ð¼2 ð‘…
− â„Ž ð‘™ð‘œð‘ ð‘  𑇠ð‘¤,ð‘œð‘¢ð‘¡ − 𑇠ð‘Žð‘–𑟠− ðœ€ðœŽ 𑇠4 − 𑇠4
ð‘¤,ð‘œð‘¢ð‘¡
ð‘Žð‘–ð‘Ÿ
ð´ ð»ð‘‡

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

9
HEAT TRANSFER COEFFICIENT

ð’’"ð’” = 91kW.m-2, ð‘» ð’”ð’‚ð’• =343K

ð’’"ð’” = 99kW.m-2, ð‘» ð’”ð’‚ð’• =357K

square 521mm,CH3OH
methanol
-2

-1

-2

-1

-2

-1

-1

-2

-1

G=302kg.m .s
G=214kg.m .s

4

0

0.0

0.2
Quality [-]
Local Vapor Quality [-]

-2

-1

-2

-1

-2

-1

-2

-1

-2

-1

G=662kg.m .s
hlocal [kW.m-2 -1]
havg [kW.m.K.K ]

G=482kg.m .s

-2

-1

h
[kW.m-2 -1]
hlocal [kW.m.K.K ]
avg

G=661kg.m .s

8

square 521mm,Cethanol
2H5OH

12

-2

12

0.4

G=483kg.m .s

8

G=304kg.m .s
G=214kg.m .s
G=125kg.m .s

4

0

0.0

0.2
0.4
Quality [-]
Local Vapor Quality [-]

ï€ ï£ =

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

10

â„Ž − â„Ž ð‘ ð‘™
â„Ž ð‘“ð‘”
HEAT TRANSFER COEFFICIENT

66 < ð‘® < 700kg.m-2.s-1, 𑳠= 𑳠ð‘¯ð‘»

130 < ð‘® < 700kg.m-2.s-1, 𑳠= 𑳠ð‘¯ð‘»

circular 543mm, methanol
CH3OH

12

circular 543mm, ethanol
C2H5OH

12

"

-2

"

-2

"

-2

q s=60kW.m

"

-2

q s=88kW.m

"

-2

q s=92kW.m

4

0
-0.2

0.0

0.2
Quality [-]
Exit Vapor Quality [-]

-1

8

"

0.4

4

0
-0.2

0.0

0.2
Quality [-]
Exit Vapor Quality [-]

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

-2

q s=124kW.m

-2

8

h
hlocal [kW.m-2.K-1] ]
[kW.m .K
avg

q s=66kW.m

-2

-1

h
hlocal [kW.m-2.K-1] ]
[kW.m .K
avg

q s=45kW.m

11

0.4
HEAT TRANSFER COEFFICIENT
ð’’"ð’” = 55kW.m-2; 130 < ð‘® < 700kg.m-2.s-1

square 521mm,C2H5OH
ethanol
Experimental
Kandlikar
Yu et al.
Saitoh et al.
Haynes and Fletcher

60

-2

-1

hlocal [kW.m-2 .K
havg [kW.m .K-1] ]

80

40
20
0
0.0

0.4

Comments

Maximum deviation

R11 and R123; Copper, ðº= 0.11 – 1.84 kg m-2 s-1; ï£ = 0.0 – 1.0;
ð‘ž"ð‘  = 11-170kW.m-2; ð·â„Ž = 0.92,1.95mm

subcooled and saturated flow
boiling

+3.0%

R113, R134b, R123; ðº = 50 – 570kg m-2 s-1; ï£ =0.00 – 0.98;
ð‘ž"ð‘  = 5 – 91kW.m-2; ð·â„Ž = 0.19 – 2.92mm

strong presence of nucleate
boiling

+3.3%

R134a, SUS304, ðº= 150-450kg m-2 s-1; ï£ = 0.2 – 1.0;
ð‘ž"ð‘  = 5-40kW.m-2; ð·â„Ž = 0.51, 1.12, 3.1mm

convective and nucleate boiling
contributions

+10.2%

Water, SS, ðº= 50 – 200kg m-2 s-1; ï£ = 0.0 – 0.9;
ð‘ƒ= 200kPa; ð·â„Ž = 2.98mm

Haynes and Fletcher(2003)
Kandlikar and Balasubramanian (2004)

Yu et al (2002)

0.2
0.3
Quality [-]
Exit Vapor Quality [-]

Application range

nucleate boiling dominates
over a large ðº and ï£ range

+21.5%

Correlation

Saitoh et al. (2007)

0.1

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

12
FLOW PATTERNS
•

Definitions adapted from Collier and Thome (1994) and Carey (2007)
–

Determined from simultaneous measurements of ∆ð‘, 𑇠ð‘¤,ð‘œð‘¢ð‘¡ and high speed imaging

Bubbly flow
Confined flow

Elongated flow

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

13
FLOW PATTERN MAPS

ð’’"ð’” = 81kW.m-2, ð‘» ð’”ð’‚ð’• =342K

circular 543mm, methanol
CH3OH, CCS

600
400
200
0

0.0

ï£ð¼ ðµ

0.2

0.4
0.6
Quality [-]
Exit Vapor Quality [-]

ð¶ðµ

Revellin and Thome (2007)

= 0.763

ð‘…ð‘’ ð‘™ð‘œ ðµð‘œ
ð‘Šð‘’ ð‘™ð‘œ

0.8

Bubbly flow
Confined flow
Elongated flow
IB/CB
CB/A

-1
-2

-2

-1

Bubbly flow
Confined flow
Elongated flow
IB/CB
CB/A

square 521mm,OH, SCS
CH3 methanol

800

Mass Flux, G [kg.m .s ]

800

Mass Flux, G [kg.m .s ]

ð’’"ð’” = 73kW.m-2, ð‘» ð’”ð’‚ð’• =360K

1.0

600
400
200
0

0.0

0.2

0.4
0.6
Quality [-]
Exit Vapor Quality[-]

0.8

0.41

ï£ð¶ðµ

ð´

= 0.00014ð‘…ð‘’ 1.47 ð‘Šð‘’ −1.23
ð‘™ð‘œ
ð‘™ð‘œ

Revellin and Thome (2007)

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

14

1.0
CLOSURE
∆ð’‘
•

inlet contraction and outlet expansion as well as non–heated lengths were quantified and subtracted from the total two-phase
flow pressure drops

•

determination of local ð‘» ð’”ð’‚ð’• and ð‘» ð’‡ and of flow pattern regimes

ð‘» ð’˜,ð’ð’–ð’•
•

𑇠ð‘¤,ð‘œð‘¢ð‘¡ varies non-linearly along the channel

•

determination of local ð‘» ð’˜,ð’Šð’ , ð‘» ð’‡ , ð’‰ and of flow pattern regimes

ð’‰
•

ð’‰ ð’ð’ð’„ð’‚ð’
•
•

•

is higher for low ï£ and independent on ðº  incipience of boiling
is lower for high ï£ and independent on ðº  dry patches on the wall causing heat transfer decline

ð’‰ ð’ð’ð’„ð’‚ð’,ð’ð’–ð’•ð’ð’†ð’•
•
•

•

is higher for low ð‘ž "ð‘  and dependent on ðº (ðº =662kg.m-2.s-1)  reduced space for convective flow to develop
is lower for low ðº and independent on ð‘ž "𑠠 dominance of nucleate boiling and annular evaporation; the effect of ð‘ž "ð‘  on
â„Ž overcomes the effect of ðº

comparison of the experimental results with correlations for subcooled boiling and flow boiling show similar trends, but the
experimental values are below prediction
Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

15
CLOSURE

ð‘­ð’ð’ð’˜ ð’‘ð’‚ð’•ð’•ð’†ð’“ð’ ð’Žð’‚ð’‘ð’”
•

flow patterns and flow pattern transitions for diabatic evaporation of ethanol and methanol obtained from ð‘», ð’‘ and high speed
imaging

•

flow patterns are qualitatively identical for both fluids and cross sections

•

similar trends with the model proposed by Revellin and Thome (2007)

•

deviations  Instabilities occurring inside the channel, due to pressure fluctuations, explosive boiling and long dryout periods that
degrade the heat transfer

•

further experimental research is needed to generate more data at higher vapor qualities and different heat fluxes and mass
fluxes, for the developing of more accurate flow pattern maps

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

16
QUESTIONS

Simultaneous measurements of Temperature, pressure and high-speed imaging
in well defined homogeneous transparent channel walls with constant wall heat flux
is a major asset to assist in the comprehension of fluid flow behavior in microscale flows

Acknowledgements
Professor Nunes de Carvalho and his team for thin film deposition.
Financial support:
Project “SURWET-COOLSâ€, PTDC/EME-MFE/109933/2009
Portuguese Science and Technology Foundation, grant SFRH-BD-76596-2011

Laboratory of Thermofluids, Combustion and Energy Systems
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels
vania.silverio@dem.ist.utl.pt
moreira@dem.ist.utl.pt

17

More Related Content

MeOH and EtOH evaporating flow mechanisms in square and circular microchannels

  • 1. Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels Laboratory of Thermofluids, Combustion and Energy Systems, LTCES Center for Innovation, Technology and Policy Research, IN+ Instituto Superior Técnico, Technical University of Lisbon vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt
  • 2. APPLICATIONS Devices shrink in footprint and increase in functionality keep getting hotter Chevrolet Equinox Fuel Cell Electric Vehicle Computers Photovoltaics http://alternativefuels.about.com http://www.treehugger.com http://onyxgreenbuilding.wordpress.com Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 2
  • 3. MOTIVATION • Microchannels – etched directly into the component • dielectric fluids –  thermal resistances • integrate the microchannel structure into a layer that is closer to the heat producing device. This removes layers of material in the thermal resistance path which can significantly improve the cooling of the heat source • Flow boiling – ïƒ heat removal rates –  pumping power –  €€ Macrochannel Flow Pattern Maps simply fail to apply Instabilities are prominent Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 3
  • 4. EXPERIMENTAL APPARATUS Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 4
  • 5. EXPERIMENTAL CONDITIONS Properties of the fluids (Tsat, 0.1MPa) methanol ethanol 800 CH OH CCS 3 CH OH SCS 3 .s - 1 ] 600 521 C H OH CCS 2 5 -2 G [kg.m 542 C H OH SCS 400 2 5 542 521 200 0 0 50 100 -2 q"s [kW.m ] CCS_543 SCS_521 Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 5 150 200
  • 6. MEASUREMENTS ð‘·ð’“ð’†ð’”ð’”ð’–ð’“ð’† 40 10 8 Pressure Drop [kPa] Pressure [kPa] 30 inlet measured pressure 20 outlet measured pressure 6 4 10 0 2 4 6 8 10 12 time [s] 14 16 18 20 0 0.5 1 1.5 Time [s] 2 2.5 3 ð‘»ð’†ð’Žð’‘ð’†ð’“ð’‚ð’•ð’–ð’“ð’† 8 400 450 380 ] 6 300 .K -2 340 h [kW.m 350 -1 360 Temperature [K] Temperature [K] 400 320 300 280 250 0 0 2 4 6 8 10 12 time [s] 14 16 18 20 20 40 60 80 2 0 100 0 Length [mm] 20 40 60 Length [mm] Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 4 6 80 100
  • 7. PRESSURE DROP ð‘ ð‘–ð‘› = ð‘ ð‘šð‘’ð‘Žð‘ ,ð‘–ð‘›ð‘™ð‘’𑡠− ∆ð‘ ð‘ð‘œð‘› − ∆ð‘ ð‘›ð»ð‘‡,ð‘–𑛠∆ð‘ ð»ð‘‡ = ð‘ ð‘–𑛠− ð‘ ð‘œð‘¢ð‘¡ ð‘ ð‘œð‘¢ð‘¡ = ð‘ ð‘šð‘’ð‘Žð‘ ,ð‘œð‘¢ð‘¡ð‘™ð‘’ð‘¡ + ∆ð‘ ð‘’ð‘¥ð‘ + ∆ð‘ ð‘›ð»ð‘‡,ð‘œð‘¢ð‘¡ heated length ð‘ ð‘ ð‘–ð‘› ð‘šð‘’ð‘Žð‘ ,ð‘–ð‘›ð‘™ð‘’𑡠∆ð‘ inlet stagnation chamber ∆ð‘ ð‘ð‘œð‘› inlet contraction ∆ð‘ ð‘›ð»ð‘‡,ð‘–ð‘› non-heated entrance length ∆ð‘ ð‘›ð»ð‘‡,ð‘œð‘¢ð‘¡ non-heated exit length single-phase ∆ð‘ ð‘ð‘œð‘› = 1 − ð‘ ð‘ ð‘œð‘¢ð‘¡ ð‘šð‘’ð‘Žð‘ ,ð‘œð‘¢ð‘¡ð‘™ð‘’𑡠∆ð‘ ð‘’ð‘¥ð‘ outlet expansion single-phase ð´ ð‘ð‘  ð´ ð‘–ð‘ ð‘ 2 + ð¾ ð‘ð‘œð‘› 1 2 ðº ðœ—ð¿ 2 ∆ð‘ ð‘’ð‘¥ð‘,ð‘ ð‘“ = ð¾ ð‘ð‘œð‘› = 0.0088𛼠2 − 0.1785𛼠+ 1.6027 1 ð¾ ðº 2 𜗠ð¿,𑜠2 ð‘’ð‘¥ð‘ ð¾ ð‘’ð‘¥ð‘ = - 2 x 1.33 two-phase ∆ð‘ ð‘’ð‘¥ð‘,ð‘¡ð‘“ = ðº 2 ð´ ð‘ð‘  ð´ ð‘–ð‘ ð‘ ð´ ð‘𑠠−1 ð´ ð‘–ð‘ ð‘ 𜗠ð¿,𑜠1 − ð‘¥ ð‘’ð‘¥ð‘–ð‘¡ Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 7 ð´ ð‘ð‘  ð´ ð‘–ð‘ ð‘ 2 1− 1+ ð´ ð‘ð‘  ð´ ð‘–ð‘ ð‘ 5 1 + 2 ð‘‹ ð‘‰ð‘‰ ð‘‹ ð‘‰ð‘‰ ∆ð‘ outlet stagnation chamber
  • 8. TEMPERATURE ð‘» ð’Šð’ð’ð’†ð’“ ð’˜ð’‚ð’ð’ one dimensional heat conduction 𑇠ð‘¤,ð‘–ð‘› = 𑇠ð‘¤,ð‘œð‘¢ð‘¡ − ð‘ž "ð‘  ð´ ð‘𑠠𑘠ð‘ ð‘¢ð‘Ÿ ð‘  ð‘“ ð‘™ð‘œð‘” ð‘ ð‘“ = 1 ð·ð‘œ ð·ð‘– 2ðœ‹ð¿ ð»ð‘‡ ð‘  ð‘“ = 0.785 ð‘» ð’‡ð’ð’–ð’Šð’… 𑇠𑓠= 𑇠ð‘š,ð‘–ð‘› + 𑇠ð‘ ð‘Žð‘¡ = 1 − ð¿ ð‘ ð‘Žð‘¡ = ð‘ž "𑠠𑃠𑤠𑧠𑉠𜌠ð¿ ð‘ ð‘,ð¿ 𑧠ð¿ ð»ð‘‡ 𑉠𜌠ð¿ ð‘ ð‘,ð¿ 𑇠ð‘ ð‘Žð‘¡,0 − 𑇠ð‘“,ð‘– ð‘ž "ð‘  ð‘ƒð‘¤ (Single-phase region) 𑇠ð‘ ð‘Žð‘¡ ð‘ƒð‘–ð‘›ð‘™ð‘’ð‘¡ + ð¿ ð»ð‘‡ 𑇠𑓠= 𑇠ð‘ ð‘Žð‘¡ Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 𑧠8 𑇠ð‘ ð‘Žð‘¡ 𑃠ð‘œð‘¢ð‘¡ð‘™ð‘’ð‘¡ (Two-phase region)
  • 9. HEAT TRANSFER COEFFICIENT -1 -1 -2 -1 -2 -1 -1 G=662kg.m .s G=483kg.m .s G=303kg.m .s -1 15 G=214kg.m .s -2 (Two-phase region) -2 -2 20 havg [kW.m .K ] 𑇠𑓠= 𑇠ð‘ ð‘Žð‘¡ squareSCS_521, C2H5OH 521mm, ethanol -2 ð‘ž "ð‘  â„Ž= 𑇠ð‘¤,ð‘–𑛠− 𑇠𑓠G=125kg.m .s 10 5 0 60 90 120 -2 q"s [kW.m ] 150 ð‘ž "ð‘  = ð¼2 𑅠− â„Ž ð‘™ð‘œð‘ ð‘  𑇠ð‘¤,ð‘œð‘¢ð‘¡ − 𑇠ð‘Žð‘–𑟠− ðœ€ðœŽ 𑇠4 − 𑇠4 ð‘¤,ð‘œð‘¢ð‘¡ ð‘Žð‘–ð‘Ÿ ð´ ð»ð‘‡ Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 9
  • 10. HEAT TRANSFER COEFFICIENT ð’’"ð’” = 91kW.m-2, ð‘» ð’”ð’‚ð’• =343K ð’’"ð’” = 99kW.m-2, ð‘» ð’”ð’‚ð’• =357K square 521mm,CH3OH methanol -2 -1 -2 -1 -2 -1 -1 -2 -1 G=302kg.m .s G=214kg.m .s 4 0 0.0 0.2 Quality [-] Local Vapor Quality [-] -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 G=662kg.m .s hlocal [kW.m-2 -1] havg [kW.m.K.K ] G=482kg.m .s -2 -1 h [kW.m-2 -1] hlocal [kW.m.K.K ] avg G=661kg.m .s 8 square 521mm,Cethanol 2H5OH 12 -2 12 0.4 G=483kg.m .s 8 G=304kg.m .s G=214kg.m .s G=125kg.m .s 4 0 0.0 0.2 0.4 Quality [-] Local Vapor Quality [-] ï€ ï£ = Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 10 â„Ž − â„Ž ð‘ ð‘™ â„Ž ð‘“ð‘”
  • 11. HEAT TRANSFER COEFFICIENT 66 < ð‘® < 700kg.m-2.s-1, 𑳠= 𑳠ð‘¯ð‘» 130 < ð‘® < 700kg.m-2.s-1, 𑳠= 𑳠ð‘¯ð‘» circular 543mm, methanol CH3OH 12 circular 543mm, ethanol C2H5OH 12 " -2 " -2 " -2 q s=60kW.m " -2 q s=88kW.m " -2 q s=92kW.m 4 0 -0.2 0.0 0.2 Quality [-] Exit Vapor Quality [-] -1 8 " 0.4 4 0 -0.2 0.0 0.2 Quality [-] Exit Vapor Quality [-] Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt -2 q s=124kW.m -2 8 h hlocal [kW.m-2.K-1] ] [kW.m .K avg q s=66kW.m -2 -1 h hlocal [kW.m-2.K-1] ] [kW.m .K avg q s=45kW.m 11 0.4
  • 12. HEAT TRANSFER COEFFICIENT ð’’"ð’” = 55kW.m-2; 130 < ð‘® < 700kg.m-2.s-1 square 521mm,C2H5OH ethanol Experimental Kandlikar Yu et al. Saitoh et al. Haynes and Fletcher 60 -2 -1 hlocal [kW.m-2 .K havg [kW.m .K-1] ] 80 40 20 0 0.0 0.4 Comments Maximum deviation R11 and R123; Copper, ðº= 0.11 – 1.84 kg m-2 s-1; ï£ = 0.0 – 1.0; ð‘ž"ð‘  = 11-170kW.m-2; ð·â„Ž = 0.92,1.95mm subcooled and saturated flow boiling +3.0% R113, R134b, R123; ðº = 50 – 570kg m-2 s-1; ï£ =0.00 – 0.98; ð‘ž"ð‘  = 5 – 91kW.m-2; ð·â„Ž = 0.19 – 2.92mm strong presence of nucleate boiling +3.3% R134a, SUS304, ðº= 150-450kg m-2 s-1; ï£ = 0.2 – 1.0; ð‘ž"ð‘  = 5-40kW.m-2; ð·â„Ž = 0.51, 1.12, 3.1mm convective and nucleate boiling contributions +10.2% Water, SS, ðº= 50 – 200kg m-2 s-1; ï£ = 0.0 – 0.9; ð‘ƒ= 200kPa; ð·â„Ž = 2.98mm Haynes and Fletcher(2003) Kandlikar and Balasubramanian (2004) Yu et al (2002) 0.2 0.3 Quality [-] Exit Vapor Quality [-] Application range nucleate boiling dominates over a large ðº and ï£ range +21.5% Correlation Saitoh et al. (2007) 0.1 Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 12
  • 13. FLOW PATTERNS • Definitions adapted from Collier and Thome (1994) and Carey (2007) – Determined from simultaneous measurements of ∆ð‘, 𑇠ð‘¤,ð‘œð‘¢ð‘¡ and high speed imaging Bubbly flow Confined flow Elongated flow Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 13
  • 14. FLOW PATTERN MAPS ð’’"ð’” = 81kW.m-2, ð‘» ð’”ð’‚ð’• =342K circular 543mm, methanol CH3OH, CCS 600 400 200 0 0.0 ï£ð¼ ðµ 0.2 0.4 0.6 Quality [-] Exit Vapor Quality [-] ð¶ðµ Revellin and Thome (2007) = 0.763 ð‘…ð‘’ ð‘™ð‘œ ðµð‘œ ð‘Šð‘’ ð‘™ð‘œ 0.8 Bubbly flow Confined flow Elongated flow IB/CB CB/A -1 -2 -2 -1 Bubbly flow Confined flow Elongated flow IB/CB CB/A square 521mm,OH, SCS CH3 methanol 800 Mass Flux, G [kg.m .s ] 800 Mass Flux, G [kg.m .s ] ð’’"ð’” = 73kW.m-2, ð‘» ð’”ð’‚ð’• =360K 1.0 600 400 200 0 0.0 0.2 0.4 0.6 Quality [-] Exit Vapor Quality[-] 0.8 0.41 ï£ð¶ðµ ð´ = 0.00014ð‘…ð‘’ 1.47 ð‘Šð‘’ −1.23 ð‘™ð‘œ ð‘™ð‘œ Revellin and Thome (2007) Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 14 1.0
  • 15. CLOSURE ∆𒑠• inlet contraction and outlet expansion as well as non–heated lengths were quantified and subtracted from the total two-phase flow pressure drops • determination of local ð‘» ð’”ð’‚ð’• and ð‘» ð’‡ and of flow pattern regimes ð‘» ð’˜,ð’ð’–𒕠• 𑇠ð‘¤,ð‘œð‘¢ð‘¡ varies non-linearly along the channel • determination of local ð‘» ð’˜,ð’Šð’ , ð‘» ð’‡ , ð’‰ and of flow pattern regimes 𒉠• ð’‰ ð’ð’ð’„ð’‚ð’ • • • is higher for low ï£ and independent on ðº  incipience of boiling is lower for high ï£ and independent on ðº  dry patches on the wall causing heat transfer decline ð’‰ ð’ð’ð’„ð’‚ð’,ð’ð’–ð’•ð’ð’†ð’• • • • is higher for low ð‘ž "ð‘  and dependent on ðº (ðº =662kg.m-2.s-1)  reduced space for convective flow to develop is lower for low ðº and independent on ð‘ž "𑠠 dominance of nucleate boiling and annular evaporation; the effect of ð‘ž "ð‘  on â„Ž overcomes the effect of ðº comparison of the experimental results with correlations for subcooled boiling and flow boiling show similar trends, but the experimental values are below prediction Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 15
  • 16. CLOSURE ð‘­ð’ð’ð’˜ ð’‘ð’‚ð’•ð’•ð’†ð’“ð’ ð’Žð’‚ð’‘𒔠• flow patterns and flow pattern transitions for diabatic evaporation of ethanol and methanol obtained from ð‘», ð’‘ and high speed imaging • flow patterns are qualitatively identical for both fluids and cross sections • similar trends with the model proposed by Revellin and Thome (2007) • deviations  Instabilities occurring inside the channel, due to pressure fluctuations, explosive boiling and long dryout periods that degrade the heat transfer • further experimental research is needed to generate more data at higher vapor qualities and different heat fluxes and mass fluxes, for the developing of more accurate flow pattern maps Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 16
  • 17. QUESTIONS Simultaneous measurements of Temperature, pressure and high-speed imaging in well defined homogeneous transparent channel walls with constant wall heat flux is a major asset to assist in the comprehension of fluid flow behavior in microscale flows Acknowledgements Professor Nunes de Carvalho and his team for thin film deposition. Financial support: Project “SURWET-COOLSâ€, PTDC/EME-MFE/109933/2009 Portuguese Science and Technology Foundation, grant SFRH-BD-76596-2011 Laboratory of Thermofluids, Combustion and Energy Systems Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels vania.silverio@dem.ist.utl.pt moreira@dem.ist.utl.pt 17