際際滷

際際滷Share a Scribd company logo
FORMULA FOR MEASURES OF VARIATION: 
S2= n裡fixi 
2-(裡fixi)2 
n(n-1) 
where: 
fi= the frequency of class interval i. 
xi= the midpoint of class interval i. 
裡fixi= the sum of the products of the 
frequency and midpoint of the class 
interval i.
THE QUARTILE DEVIATION: 
The quartile deviation is used when the 
median is used as an average; when the 
data depart noticeably from the normal. It is 
used for ordinal data. 
The quartile deviation, Q, is frequently 
called the semi-interquartile range. It is half 
of the distance between two quartile points, 
Q1, and Q3.
FORMULA FOR QUARTILE DEVIATION: 
Q= Q3-Q1 
2 
Q1= L1+ (n/4 cf)c 
f 
Q3= L1+(3n/4 cf)c 
f
EXAMPLE: 
Given the following data, 
Class interval f 
36- 40 2 
31- 35 8 
26- 30 12 
21- 25 18 
16- 20 10
Complete the table and find the mean, median, mode, variance, 
sd, Q1, Q2, and Q. 
Class 
interval 
f Class 
boundaries 
Midpoint 
(x) 
u fu fu2 fixi fx2 cf 
36- 40 2 35.5- 40.5 38 2 4 8 76 2888 50 
31- 35 8 30.5- 35.5 33 1 8 8 264 8712 48 
26- 30 12 25.5- 30.5 28 0 0 0 336 9408 40 
21- 25 18 20.5- 25.5 23 -1 -18 18 414 9522 28 
16- 20 10 15.5- 20.5 18 -2 -20 4 180 3240 10
MEAN= 裡fi Xi = 1270 = 25.4 
n 50 
MEDIAN= L1+ (n/2-cf)c = 20.5+ 50/2 -10 (5) = 24.67 
f 18 
MODE= L1+ (d1)c = 20.5+ _8_ (5)= 23.36 
d1+d2 8+6 
2-(裡fixi)2 = 50(33770)-(1270) 2 
n(n-1) 50(49) 
VARIANCE= n裡fixi 
= 1688500-1612900 
2450 
= 75600 = 30.86 
2450
S= .  
QUARTILE DEVIATION 
Q1= L1+ (n/4 cf)c = 20.5 + (50/4  10)5 
f 18 
= 20.5 + 0.69= 21.19 
Q3= L1+(3n/4 cf)c = 25.5 + (3/4 (50)  28) 5 
f 12 
= 25.5 + 3. 96 = 29. 46 
Q= Q3-Q1 = 29. 46- 21. 19 = 4. 135 
2 2

More Related Content

Measures of Variability

  • 1. FORMULA FOR MEASURES OF VARIATION: S2= n裡fixi 2-(裡fixi)2 n(n-1) where: fi= the frequency of class interval i. xi= the midpoint of class interval i. 裡fixi= the sum of the products of the frequency and midpoint of the class interval i.
  • 2. THE QUARTILE DEVIATION: The quartile deviation is used when the median is used as an average; when the data depart noticeably from the normal. It is used for ordinal data. The quartile deviation, Q, is frequently called the semi-interquartile range. It is half of the distance between two quartile points, Q1, and Q3.
  • 3. FORMULA FOR QUARTILE DEVIATION: Q= Q3-Q1 2 Q1= L1+ (n/4 cf)c f Q3= L1+(3n/4 cf)c f
  • 4. EXAMPLE: Given the following data, Class interval f 36- 40 2 31- 35 8 26- 30 12 21- 25 18 16- 20 10
  • 5. Complete the table and find the mean, median, mode, variance, sd, Q1, Q2, and Q. Class interval f Class boundaries Midpoint (x) u fu fu2 fixi fx2 cf 36- 40 2 35.5- 40.5 38 2 4 8 76 2888 50 31- 35 8 30.5- 35.5 33 1 8 8 264 8712 48 26- 30 12 25.5- 30.5 28 0 0 0 336 9408 40 21- 25 18 20.5- 25.5 23 -1 -18 18 414 9522 28 16- 20 10 15.5- 20.5 18 -2 -20 4 180 3240 10
  • 6. MEAN= 裡fi Xi = 1270 = 25.4 n 50 MEDIAN= L1+ (n/2-cf)c = 20.5+ 50/2 -10 (5) = 24.67 f 18 MODE= L1+ (d1)c = 20.5+ _8_ (5)= 23.36 d1+d2 8+6 2-(裡fixi)2 = 50(33770)-(1270) 2 n(n-1) 50(49) VARIANCE= n裡fixi = 1688500-1612900 2450 = 75600 = 30.86 2450
  • 7. S= . QUARTILE DEVIATION Q1= L1+ (n/4 cf)c = 20.5 + (50/4 10)5 f 18 = 20.5 + 0.69= 21.19 Q3= L1+(3n/4 cf)c = 25.5 + (3/4 (50) 28) 5 f 12 = 25.5 + 3. 96 = 29. 46 Q= Q3-Q1 = 29. 46- 21. 19 = 4. 135 2 2