ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
City College of New York School of Engineering Mechanical Engineering Department
ME 54700-Environmental Control
Fall-2010
Subject : Design for a heating and cooling system of a building
Instructor : Jorge E. González, Ph.D.NOAA CREST Professor of
Mechanical Engineering
Student : Mehmet Bariskan
2
Requirement
Design for a heating and cooling system of a building consisting of a restaurant, lounge, and a
kitchen for maximum capacity of 100 people. The restaurant is to be located in the New
York/New Jersey area and the HVAC design should consider high energy efficient approaches.
Building data is as follows;
Building size: 80 ft x 60 ft x 12 ft.
Windows are located in the south, north and east sides; with sizes corresponding to wall
area percentages equal to 25%, 10%, and 10%. Windows should be double glazing,
low emissivity. Overhangs can be used to reduce cooling loads.
Walls and roofs should use high R values corresponding to minimums of 20 and 36 hrft2-
ºF/Btu, respectively.
Lighting intensity is equivalent to 10W/m2.
Equipment includes a large gas stove, a large refrigerator, several TV screens spread
across the room, and three computers.
Infiltration should be set to a high value equal to 1.5 changes per hour to maintain good
levels of air quality.
Provide the following in your solution;
Set a schedule for use of the building.
Report infiltration rates, design cooling and heating loads based on daily profile.
Define ventilation rates. Refer to ASHRAE Standards for specific application.
Design air distribution system. Prefer method is exposed round system. Specify duct
diameters, distance, and exhaust systems.
Sizing and recommended HVAC components; V/C system, air handling unit, cooling &
heating coils. Specify vendors of each component and model numbers.
Provide schematic of the design.
Provide cost estimate of the HVAC system.
Report;
Write a concise report that describes the design, and includes the requirements above.
Include a cover page in the report. Reports should not exceed 20 pages total, and are
due Friday December 17, 2010, at 5:00 PM EST.
Reference:
1. 2007 American Society of Heating, Refrigeration and Air Conditioning (ASHRAE),
Applications Handbook.
3
Schedule for use of the building
8 am to 8 pm (12 hours /day- Lights on 12 hours to), 100 people max. capacity (100 people an
hour)
80 ft x 60 ft x 12 ft
Total;
Area East (ft2
) North ( West ( South (
Wall 648 864 688 720
Window 72 96 0 240
Door 0 0 32 0
Length
Window 2x(9+8)=34 ft 2x(12+8)=40 ft 0 2x(4.5+8)+
2x(25.5+8)=92ft
Door 0 0 2x(4+8)=24 ft 0
4
Kitchen;
Area East (ft2
) North ( West ( South (
Wall 336 360 360 360
Window 0 0 0 0
Door 24 0 0 0
Length
Window 0 0 0 0
Door 2*(3+8)=22 ft 0 0 0
Lounge;
Area East (ft2
) North ( West ( South (
Wall 336 360 328 324
Window 0 0 0 36
Door 24 0 32 0
Length
Window 0 0 0 2x(4.5+8)=25ft
Door 2*(3+8)=22 ft 0 2*(4+8)=24 ft 0
Restaurant;
Area East (ft2
) North ( West ( South (
Wall 648 504 672 396
Window 72 96 0 204
Door 0 0 48 0
Length
Window 2x(9+8)=34 ft 2x(12+8)=40 ft 0 2x(25.5+8)=67ft
Door 0 0 4*(3+8)=44 ft 0
ï‚· Infiltration rates
Assuming 20 mph (29.5 ft/s),
Δ P=
(inWg)
South North East West
Cp (Figure 7.4) 0.6 -0.2 -0.6 -0.6
0.114 -0.038 -0.114 -0.114
(Figure 7.6) 0.01 0.01 0.01 0.01
0.12 -0.03 -0.12 -0.12
5
Assuming k= 1 (tight) for windows, k=0.22 (tight) for wall, k=40 crack 1/8’’, one door on south,
South North East West
(inWG) 0.12 -0.03 -0.12 -0.12
Q/L (Fig. 7.8) 0.35 -0.1 -0.35 -0.35
L window (ft) 92 40 34 0
Q window 32.2 4 11.9 0 48.1
(Q/A) wall (Fig. 7.11) 0.05 0.02 -0.05 -0.05
A wall 720 864 648 688
Qc wall 36 17.3 32.4 34.4 120.1
(Q/L) door(Fig. 7.9) 0 0 0 4
L door 0 0 0 24
Q door 0 0 0 96 96
Total CFM 264.2
And infiltration due to door opening as a function of traffic rate 100 people per hour.
From Figure (7.10) C=2900 (Single-bank type) Q traffic= 1000 CFM
Q Total Infiltration = 1264 CFM
ï‚· Design cooling and heating loads based on daily profile.
Design Dry 90 F Summer, Winter 20 F
Windows double glazing with low emissivity ( Table 6.6)
6
Restaurant
7
8
Lounge
9
10
Kitchen
11
12
Qtotal = 55493 W = 15.78 Tons
For heating;
Restourant
13
14
Lounge
15
16
Kitchen
17
18
Qcooling = 55493 W = 15.78 Tons
Qheating = 40414 W = 11.49 Tons
Ventilation Rates
The volume of building = 80 x 60 x 12 = 57600 ft
3
Infiltration should be set to a high value equal to 1.5 changes per hour
= 57600 x 1.5 = 86400 ft
3
/h = 1440 CFM.
Cooling and Heating Coil capacities
Total volume = 60 x 80 x 12 = 57600 ft2
Flow Rate = = = 1440 CFM
%25 of air supplied from inside 0.25 x 1440 = 360 CFM
%75 of air supplied from outside 0.75 x 1440 = 1080 CFM
Specific volume of air
Mass flow rate going to system, coming from outside, returned from inside
19
Cooling Coil capacity;
Heating Coil Capacity;
For summer time;
Duct Design;
Section Length
(ft)
V
(ft3
/min)
∆P/L Duct
Loss in
WG
Diameter
(in)
Velocity
(ft/min)
C Fitting
Loss in
WG
Total
WG
1-2 3 1125 0.25 0.0075 16 806 - - 0.0075
2-3 2 1500 0.25 0.005 18 849 0.23 0.01 0.015
2-33 3 375 0.25 0.0075 10 688 0.22 0.006 0.0135
33 2 375 0.25 0.005 10 688 - - 0.005
4-5 4 1500 0.25 0.01 18 849 - - 0.01
6-7 6 1500 0.25 0.015 18 849 - - 0.015
8-9 14 1500 0.25 0.035 18 849 - - 0.035
9-10 15 100 0.25 0.0375 6 510 1.5 0.024 0.0615
10 2 100 0.25 0.005 6 510 0.22 0.0036 0.0086
20
9-11 9 1400 0.25 0.0225 18 793 0.009 0.0004 0.0229
11 2 100 0.25 0.005 6 510 1.5 0.024 0.029
11-12 8 1300 0.25 0.02 18 736 0.007 0.0002 0.0202
12-13 15 100 0.25 0.0375 6 510 1.5 0.024 0.0615
13 2 100 0.25 0.005 6 510 0.22 0.004 0.009
12-14 9 1200 0.25 0.0225 16 860 0.008 0.0004 0.0229
14 2 100 0.25 0.005 6 510 1.7 0.028 0.033
14-15 10 1100 0.25 0.025 16 788 0.008 0.0003 0.0253
15-16 15 1100 0.25 0.0375 16 788 0.22 0.009 0.0465
16 2 100 0.25 0.005 6 510 1.8 0.029 0.034
16-17 15 1000 0.25 0.0375 14 936 0.009 0.0005 0.038
17 2 100 0.25 0.005 6 510 1.4 0.023 0.028
17-18 15 900 0.25 0.0375 14 843 0.01 0.0004 0.0379
18-19 10 900 0.25 0.025 14 843 0.22 0.0097 0.0347
19 2 100 0.25 0.005 6 510 1.4 0.023 0.028
19-20 9 800 0.25 0.0225 14 749 0.011 0.0004 0.0229
20-21 15 100 0.25 0.0375 6 510 1.4 0.023 0.0605
21 2 100 0.25 0.005 6 510 0.22 0.004 0.009
20-22 8 700 0.25 0.02 12 892 0.012 0.0006 0.0206
22 2 100 0.25 0.005 6 510 1.41 0.023 0.028
22-23 9 600 0.25 0.0225 12 764 0.014 0.0005 0.023
23-24 15 100 0.25 0.0375 6 510 1.3 0.021 0.0585
24 2 100 0.25 0.005 6 510 0.22 0.0036 0.0086
23-25 8 500 0.25 0.02 10 917 0.016 0.0008 0.0208
25 2 100 0.25 0.005 6 510 1.2 0.019 0.024
25-26 9 400 0.25 0.0225 9 904 0.02 0.001 0.0235
26-27 15 100 0.25 0.0375 6 510 1.12 0.018 0.0555
27 2 100 0.25 0.005 6 510 0.22 0.0036 0.0086
26-28 8 300 0.25 0.02 8 1146 0.03 0.0025 0.0225
28 2 100 0.25 0.005 6 510 1.1 0.018 0.023
28-29 9 200 0.25 0.0225 7 749 0.05 0.0017 0.0242
29-30 15 200 0.25 0.0375 7 749 0.22 0.008 0.0455
30 2 100 0.25 0.005 6 510 0.98 0.016 0.021
30-31 15 100 0.25 0.0375 6 510 0.1 0.0016 0.0391
31-32 17 100 0.25 0.0425 6 510 0.22 0.0036 0.0461
32 2 100 0.25 0.005 6 510 0.22 0.0036 0.0086
Most pressure loss ;
∆Ppomp=0.035 + 0.0229 + 0.0202 + 0.0229 + 0.0253 + 0.0465 + 0.038 + 0.0379 + 0.0347 + 0.0229 +
0.0206 + 0.023 + 0.0208 + 0.0235 + 0.0225 + 0.0242 + 0.0455 + 0.0391 + 0.0461 + 0.0086
= 0.5802 InWG = 144.5 Pa
Component Selection:
Cooling Coil
Supplier: Carrier (www.commercial.carrier.com)
Model Number: 28BDA412HDC121CR
21
Performance Data;
Rows Circuit
Type
Pins / in Total
Capacity
Btuh
Water
Temp
Drop
Leaving
Air DB
Temp
Leaving
Air WB
Temp
Water
Pressure
Drop (ft
WG)
Air
Pressure
Drop (in
WG)
4 Half 12 15275 14.7 59.14 57.37 11.3 0.61
Heating Coil;
Supplier: Carrier (www.commercial.carrier.com)
Model Number: 28BHA214HDB121CR
22
Performance Data;
Rows Circuit
Type
Pins / in Total
Capacity
Btuh
Water
Temp
Drop
Leaving
Air DB
Temp
Water
Pressure
Drop (ft
WG)
Air
Pressure
Drop (in
WG)
2 Half 14 37215 46.19 108.62 9.16 0.52

More Related Content

Mehmet Bariskan -Env. Control 2010_Design for a heating and cooling system of a building

  • 1. City College of New York School of Engineering Mechanical Engineering Department ME 54700-Environmental Control Fall-2010 Subject : Design for a heating and cooling system of a building Instructor : Jorge E. González, Ph.D.NOAA CREST Professor of Mechanical Engineering Student : Mehmet Bariskan
  • 2. 2 Requirement Design for a heating and cooling system of a building consisting of a restaurant, lounge, and a kitchen for maximum capacity of 100 people. The restaurant is to be located in the New York/New Jersey area and the HVAC design should consider high energy efficient approaches. Building data is as follows; Building size: 80 ft x 60 ft x 12 ft. Windows are located in the south, north and east sides; with sizes corresponding to wall area percentages equal to 25%, 10%, and 10%. Windows should be double glazing, low emissivity. Overhangs can be used to reduce cooling loads. Walls and roofs should use high R values corresponding to minimums of 20 and 36 hrft2- ºF/Btu, respectively. Lighting intensity is equivalent to 10W/m2. Equipment includes a large gas stove, a large refrigerator, several TV screens spread across the room, and three computers. Infiltration should be set to a high value equal to 1.5 changes per hour to maintain good levels of air quality. Provide the following in your solution; Set a schedule for use of the building. Report infiltration rates, design cooling and heating loads based on daily profile. Define ventilation rates. Refer to ASHRAE Standards for specific application. Design air distribution system. Prefer method is exposed round system. Specify duct diameters, distance, and exhaust systems. Sizing and recommended HVAC components; V/C system, air handling unit, cooling & heating coils. Specify vendors of each component and model numbers. Provide schematic of the design. Provide cost estimate of the HVAC system. Report; Write a concise report that describes the design, and includes the requirements above. Include a cover page in the report. Reports should not exceed 20 pages total, and are due Friday December 17, 2010, at 5:00 PM EST. Reference: 1. 2007 American Society of Heating, Refrigeration and Air Conditioning (ASHRAE), Applications Handbook.
  • 3. 3 Schedule for use of the building 8 am to 8 pm (12 hours /day- Lights on 12 hours to), 100 people max. capacity (100 people an hour) 80 ft x 60 ft x 12 ft Total; Area East (ft2 ) North ( West ( South ( Wall 648 864 688 720 Window 72 96 0 240 Door 0 0 32 0 Length Window 2x(9+8)=34 ft 2x(12+8)=40 ft 0 2x(4.5+8)+ 2x(25.5+8)=92ft Door 0 0 2x(4+8)=24 ft 0
  • 4. 4 Kitchen; Area East (ft2 ) North ( West ( South ( Wall 336 360 360 360 Window 0 0 0 0 Door 24 0 0 0 Length Window 0 0 0 0 Door 2*(3+8)=22 ft 0 0 0 Lounge; Area East (ft2 ) North ( West ( South ( Wall 336 360 328 324 Window 0 0 0 36 Door 24 0 32 0 Length Window 0 0 0 2x(4.5+8)=25ft Door 2*(3+8)=22 ft 0 2*(4+8)=24 ft 0 Restaurant; Area East (ft2 ) North ( West ( South ( Wall 648 504 672 396 Window 72 96 0 204 Door 0 0 48 0 Length Window 2x(9+8)=34 ft 2x(12+8)=40 ft 0 2x(25.5+8)=67ft Door 0 0 4*(3+8)=44 ft 0 ï‚· Infiltration rates Assuming 20 mph (29.5 ft/s), Δ P= (inWg) South North East West Cp (Figure 7.4) 0.6 -0.2 -0.6 -0.6 0.114 -0.038 -0.114 -0.114 (Figure 7.6) 0.01 0.01 0.01 0.01 0.12 -0.03 -0.12 -0.12
  • 5. 5 Assuming k= 1 (tight) for windows, k=0.22 (tight) for wall, k=40 crack 1/8’’, one door on south, South North East West (inWG) 0.12 -0.03 -0.12 -0.12 Q/L (Fig. 7.8) 0.35 -0.1 -0.35 -0.35 L window (ft) 92 40 34 0 Q window 32.2 4 11.9 0 48.1 (Q/A) wall (Fig. 7.11) 0.05 0.02 -0.05 -0.05 A wall 720 864 648 688 Qc wall 36 17.3 32.4 34.4 120.1 (Q/L) door(Fig. 7.9) 0 0 0 4 L door 0 0 0 24 Q door 0 0 0 96 96 Total CFM 264.2 And infiltration due to door opening as a function of traffic rate 100 people per hour. From Figure (7.10) C=2900 (Single-bank type) Q traffic= 1000 CFM Q Total Infiltration = 1264 CFM ï‚· Design cooling and heating loads based on daily profile. Design Dry 90 F Summer, Winter 20 F Windows double glazing with low emissivity ( Table 6.6)
  • 7. 7
  • 9. 9
  • 11. 11
  • 12. 12 Qtotal = 55493 W = 15.78 Tons For heating; Restourant
  • 13. 13
  • 15. 15
  • 17. 17
  • 18. 18 Qcooling = 55493 W = 15.78 Tons Qheating = 40414 W = 11.49 Tons Ventilation Rates The volume of building = 80 x 60 x 12 = 57600 ft 3 Infiltration should be set to a high value equal to 1.5 changes per hour = 57600 x 1.5 = 86400 ft 3 /h = 1440 CFM. Cooling and Heating Coil capacities Total volume = 60 x 80 x 12 = 57600 ft2 Flow Rate = = = 1440 CFM %25 of air supplied from inside 0.25 x 1440 = 360 CFM %75 of air supplied from outside 0.75 x 1440 = 1080 CFM Specific volume of air Mass flow rate going to system, coming from outside, returned from inside
  • 19. 19 Cooling Coil capacity; Heating Coil Capacity; For summer time; Duct Design; Section Length (ft) V (ft3 /min) ∆P/L Duct Loss in WG Diameter (in) Velocity (ft/min) C Fitting Loss in WG Total WG 1-2 3 1125 0.25 0.0075 16 806 - - 0.0075 2-3 2 1500 0.25 0.005 18 849 0.23 0.01 0.015 2-33 3 375 0.25 0.0075 10 688 0.22 0.006 0.0135 33 2 375 0.25 0.005 10 688 - - 0.005 4-5 4 1500 0.25 0.01 18 849 - - 0.01 6-7 6 1500 0.25 0.015 18 849 - - 0.015 8-9 14 1500 0.25 0.035 18 849 - - 0.035 9-10 15 100 0.25 0.0375 6 510 1.5 0.024 0.0615 10 2 100 0.25 0.005 6 510 0.22 0.0036 0.0086
  • 20. 20 9-11 9 1400 0.25 0.0225 18 793 0.009 0.0004 0.0229 11 2 100 0.25 0.005 6 510 1.5 0.024 0.029 11-12 8 1300 0.25 0.02 18 736 0.007 0.0002 0.0202 12-13 15 100 0.25 0.0375 6 510 1.5 0.024 0.0615 13 2 100 0.25 0.005 6 510 0.22 0.004 0.009 12-14 9 1200 0.25 0.0225 16 860 0.008 0.0004 0.0229 14 2 100 0.25 0.005 6 510 1.7 0.028 0.033 14-15 10 1100 0.25 0.025 16 788 0.008 0.0003 0.0253 15-16 15 1100 0.25 0.0375 16 788 0.22 0.009 0.0465 16 2 100 0.25 0.005 6 510 1.8 0.029 0.034 16-17 15 1000 0.25 0.0375 14 936 0.009 0.0005 0.038 17 2 100 0.25 0.005 6 510 1.4 0.023 0.028 17-18 15 900 0.25 0.0375 14 843 0.01 0.0004 0.0379 18-19 10 900 0.25 0.025 14 843 0.22 0.0097 0.0347 19 2 100 0.25 0.005 6 510 1.4 0.023 0.028 19-20 9 800 0.25 0.0225 14 749 0.011 0.0004 0.0229 20-21 15 100 0.25 0.0375 6 510 1.4 0.023 0.0605 21 2 100 0.25 0.005 6 510 0.22 0.004 0.009 20-22 8 700 0.25 0.02 12 892 0.012 0.0006 0.0206 22 2 100 0.25 0.005 6 510 1.41 0.023 0.028 22-23 9 600 0.25 0.0225 12 764 0.014 0.0005 0.023 23-24 15 100 0.25 0.0375 6 510 1.3 0.021 0.0585 24 2 100 0.25 0.005 6 510 0.22 0.0036 0.0086 23-25 8 500 0.25 0.02 10 917 0.016 0.0008 0.0208 25 2 100 0.25 0.005 6 510 1.2 0.019 0.024 25-26 9 400 0.25 0.0225 9 904 0.02 0.001 0.0235 26-27 15 100 0.25 0.0375 6 510 1.12 0.018 0.0555 27 2 100 0.25 0.005 6 510 0.22 0.0036 0.0086 26-28 8 300 0.25 0.02 8 1146 0.03 0.0025 0.0225 28 2 100 0.25 0.005 6 510 1.1 0.018 0.023 28-29 9 200 0.25 0.0225 7 749 0.05 0.0017 0.0242 29-30 15 200 0.25 0.0375 7 749 0.22 0.008 0.0455 30 2 100 0.25 0.005 6 510 0.98 0.016 0.021 30-31 15 100 0.25 0.0375 6 510 0.1 0.0016 0.0391 31-32 17 100 0.25 0.0425 6 510 0.22 0.0036 0.0461 32 2 100 0.25 0.005 6 510 0.22 0.0036 0.0086 Most pressure loss ; ∆Ppomp=0.035 + 0.0229 + 0.0202 + 0.0229 + 0.0253 + 0.0465 + 0.038 + 0.0379 + 0.0347 + 0.0229 + 0.0206 + 0.023 + 0.0208 + 0.0235 + 0.0225 + 0.0242 + 0.0455 + 0.0391 + 0.0461 + 0.0086 = 0.5802 InWG = 144.5 Pa Component Selection: Cooling Coil Supplier: Carrier (www.commercial.carrier.com) Model Number: 28BDA412HDC121CR
  • 21. 21 Performance Data; Rows Circuit Type Pins / in Total Capacity Btuh Water Temp Drop Leaving Air DB Temp Leaving Air WB Temp Water Pressure Drop (ft WG) Air Pressure Drop (in WG) 4 Half 12 15275 14.7 59.14 57.37 11.3 0.61 Heating Coil; Supplier: Carrier (www.commercial.carrier.com) Model Number: 28BHA214HDB121CR
  • 22. 22 Performance Data; Rows Circuit Type Pins / in Total Capacity Btuh Water Temp Drop Leaving Air DB Temp Water Pressure Drop (ft WG) Air Pressure Drop (in WG) 2 Half 14 37215 46.19 108.62 9.16 0.52