Nyeri merupakan pengalaman sensorik dan emosional yang tidak menyenangkan yang terkait dengan kerusakan jaringan, baik aktual maupun potensial. Nyeri berperan melindungi tubuh dan merupakan mekanisme pertahanan. Terdapat dua jenis nyeri yaitu nyeri cepat yang tajam dan nyeri lambat yang menyiksa dan bersifat kronis.
1 of 33
More Related Content
Mekanisme nyeri
2. Nyeri adalah pengalaman sensorik dan
emosional yang tidak menyenangkan terkait
kerusakan jaringan, baik aktual maupun
potensial atau yang digambarkan dalam
bentuk kerusakan tersebut.
3. Nyeri adalah anugerah
Pain is alarm protection tell us that something
wrong in our body.
Sulit dibayangkan seandainya tubuh kita tidak
dilengkapi dgn reseptor nyeri, sehingga kita
tidak pernah menyadari kalau tubuh kita telah
terancam kerusakan.
4. Pain can occur due toPain can occur due to
Potential tissue damage --- >
Physiological Pain
Actual tissue damage ----- >Actual tissue damage ----- > NociceptiveNociceptive
pain or Acute pain or inflammation painpain or Acute pain or inflammation pain
Described in term of such damage ----- >Described in term of such damage ----- >
Chronic PainChronic Pain
5. Pain that occur to stimulate withdrawalsPain that occur to stimulate withdrawals
reflexreflex
To prevent tissue damageTo prevent tissue damage
To prevent our body from hatmful things.To prevent our body from hatmful things.
6. Acute Pain or Nociceptive Pain is pain thatAcute Pain or Nociceptive Pain is pain that
elicited by activation of nociceptorselicited by activation of nociceptors
There are 4 distinct process involved:There are 4 distinct process involved:
1. Transduction1. Transduction
2. Transmission2. Transmission
3. Modulation and3. Modulation and
4. Perception4. Perception
7. Pain Perception
Brain
Dorsal Root
Ganglion
Dorsal Horn
Nociceptor
Spinal Cord
Gottschalk A et al. Am Fam Physician. 2001;63:1979-84.
Fields HL et al. Harrisons Principles of Internal Medicine. 1998:53-8.
8. 1. Transduction Conversion of noxious stimuli
(mechanical, thermal, chemical into
electrical activation
2 Transmission Communication of the nerve impulse
from the periphery to the spinal cord,
up to spinothalamic track to the
thalamus and cerebral cortex
3 Modulation Process by which impulse travel from
the brain back down to the spinal cord
to selectiveley inhibit (or sometimes
amlpify) pain impulse
4 Perception Net result of three events the
subjective experience of pain
9. Pain perception much depend onPain perception much depend on
modulation ---- > 3 possibilitiesmodulation ---- > 3 possibilities
1.1.Nociception without painNociception without pain
(ada n(ada nosisepsi tanpa nyeri)osisepsi tanpa nyeri)
2.2.Nociception with painNociception with pain
(ada nosisepsi dengan nyeri).(ada nosisepsi dengan nyeri).
3.3.Pain without NociceptionPain without Nociception
(ada nyeri tanpa nosisepsi)(ada nyeri tanpa nosisepsi)
12. Activation of the Central
Nervous System
at the
Spinal Cord Level
Tissue Damage
Activation of the
Peripheral Nervous
System
Transmission of the Pain
Signal to the Brain
Pain
Samad TA et al. Nature. 2001;410:471-5.
13. Nyeri dibedakan atas:
Nyeri Neuropatik: Nyeri yang disebabkan oleh
lesi (kerusakan) sistem saraf.
Nyeri Nosiseptif: Nyeri yang disebabkan oleh
proses inflamasi dan kerusakan jaringan
14. Pd keadaan sakit, tubuh merasakan nyeri
Nyeri merupakan mekanisme pertahanan
tubuh sehingga individu memindahkan
stimulus nyeri
Ada 2 jenis rasa nyeri:
Nyeri cepat: tajam, menusuk, rasa kesetrum
dan akut.
Nyeri lambat: rasa terbakar, pegal, berdenyut,
nyeri mual dan khronik
16. Reseptor nyeri dan rangsangannya:
Semua reseptor adalah ujung saraf bebas.
Tersebar dipermukaan kulit dan jaringan
seperti: - periosteum
- dinding dalam arteri
- permukaan sendi
- falks / tentorium serebri
Ada 3 macam stimulus: - mekanik
- suhu
- kimiawi
18. Nyeri berperan melindungi tubuh
Nosiseptor adalah suatu reseptor nyeri pada
ujung saraf bebas yg ditemukan pada jaringan
tubuh, kecuali otak.
Rangsangan termal, kimia dan mekanik akan
mengaktifkan nosiseptor, dengan jalan
melepaskan prostaglandin, kinin dan ion
kalium
19. Impuls nyeri cepat
- berlangsung cepat (0,1 dtk pasca
rangsangan
- disepanjang saraf tipe A bermielin
- nyeri bersifat akut, tajam atau menusuk
- tdk dijumpai pd struktur dalam
20. Impuls nyeri lambat terjadi disepanjang
saraf tipe C tdk bermielin
- nyeri sangat menyiksa, dan menjadi khronik
spt; rasa terbakar, tumpul dan berdenyut. spt
sakit gigi dan infeksi kuku,
- nyeri pd rangsangan reseptor kulit disebut
dgn; superficial somatic pain
- pd rangsangan otot skeletal, sendi, tendon
disebut; deep somatic pain
21. - nyeri viseral; akibat rangsangan nosiseptor
organ pd viseral spt distensi abdomen dan
iskhemia organ internal.
- zat kimia yg merangsang nyeri adalah
bradikinin, serotonin, ion kalium, asetil kholine
dan enzim proteolitik
22. Dua jaras penyaluran sinyal nyeri ke sistem
saraf pusat
Nyeri cepat dan tajam dirangsang oleh
mekanik dan suhu.
- disalurkan ke medula spinalis oleh serabut
tipe A隆
- kecepatan 6-10 m/detik.
Nyeri lambat dirangsang secara kimia,
mekanik dan suhu
- disalurkan melalui saraf tipe C
- kecepatan 0,5-2 m/dtk
23. Dorsal Horn
Dorsal root
ganglion
Peripheral sensory
Nerve fibers
A硫
A隆
C
Large
fibers
Small
fibers
There are Two Sensory Afferent Neurons
1. Large myelinated A硫 fibers, very fast conduction velocity. Respond to
innocuous stimuli
2. Small myelinated A隆 & C unmyelinated fibers, have slow conduction
velocity. Respond to noxious stimuli
25. Dari kornu dorsalis menuju otak, sinyal nyeri
disalurkan di MS melalui:
Tr. Neo-spinotalamikus
- untuk nyeri cepat berakhir di lamina I
(lamina marginalis) kolumna anterolat.
- sebgn berakhir di kompleks ventrobasal
dan sebgn lagi di korteks somatosensorik
26. Tr. Paleo-spinotalamikus
- utk nyeri lambat dan khronik melalui saraf tipe C
dan sebgn saraf tipe A隆
- berakhir di lamina II dan III subs. Gelatinosa dan
lamina V dan VII kornu dorsalis
- Neurotransmiternya Subst. P dan Glutamat
- Berakhir di tiga tempat
Nc. Retikularis medula, pons dan mesensefalon
Area tekt. mesensefalon dan kol. Sup dan Inf
Subst. grisea peri akuadukt
27. Dorsal Horn Neuron
C-Fiber Terminal
AMPA
NMD
A
Ca2+
Glutamate
PKC
P
P
(+)
(+)
(-)
Woolf CJ et al. Science. 2000;288:1765-8.
Schwartzman RJ et al. Arch Neurol.
2001;58:1547-50.
Substance P
29. Reaksi seseorang terhadap nyeri bervariasi.
Dipengaruhi otak melakukan inhibisi
(sistem analgesia).
Ada 3 komponen:
1. Area periakuadukt grisea dan periventr.
mesensefalon., sinyal dikirim ke
2. Nukl. Raphe magnus dibawah pons diatas
medula obl. Dan disalurkan ke
3. Kompleks penghambat rasa nyeri radiks dorsalis
MS kemudian dipancarkan ke-otak
30. Enkefalin disekresikan oleh nc. periventrik, area
peri akuadukt dan raphe magnus.
menghambat pd pre dan post sinaps serabut
nyeri tipe C dan A隆
Serotonin oleh radiks dorsalis MS menghambat
pd pre-sinaptik terhadap ion kasium.
31. Sistim Opium Otak, Endorfin dan Enkefalin
Morphin like subst. bekerja pd sebagian sistem
analgesia.
Ada 12 macam opium like subst di-otak
Berasal dari pemecahan 3 mol. Protein, y.i pro-
opiomelanokortin, pro-enkefalin dan pro-
dinorfin.
Bhn yg penting adalah 硫-endorfin, met-
enkefalin dan leu-endorfin.
32. Pd reseptor sensasi diseleksi dan di-olah jadi
4 tahap
1. Rangsangan reseptor sensorik
- Hrs tepat dan adekuat hingga terjadi
respons.
2. Transduksi stimulus.
- terjadi pd kornu dorsalis MS (dikonversi)
menjadi energi rangsangan (gradasi pot
tergantung kuat rangsangan dan ampl
33. 3. Membangkitkan impuls saraf.
- Pd grad. potensial mencapai ambang
tercetus 1 impuls atau lebih, kmdian
menyebar ke pusat.
4. Integrasi input sensorik.
Daerah tertentu di-otak akan menerima
dan meng-integrasikan impuls sensorik
dan diterima pd area tertentu di korteks
Editor's Notes
Activation of peripheral pain receptors, also called nociceptors, by noxious stimuli generates signals that travel to the dorsal horn of the spinal cord via the dorsal root ganglion. From the dorsal horn, the signals are carried along the ascending pain pathway or the spinothalamic tract to the thalamus and the cortex. Pain can be controlled by pain-inhibiting and pain-facilitating neurons. Descending signals originating in supraspinal centers can modulate activity in the dorsal horn by controlling spinal pain transmission.1,2
Gottschalk A, Smith DS. New concepts in acute pain therapy: preemptive analgesia. Am Fam Physician. 2001;63:1979-1984.
Fields HL, Martin JB. Pain: pathophysiology and management. In: Fauci AS, Braunwald E, Isselbacher KF, et al, eds. Harrisons Principles of Internal Medicine. 14th ed. New York, NY: McGraw-Hill; 1998:53-58.
<<Animated slide: Please advance to view entire sequence.>>
The pain response is a complex process that involves both the peripheral nervous system (PNS) and the central nervous system (CNS).
Tissue injury results in the activation of the PNS. Signals from the PNS travel into the CNS. They move through the spinal cord before traveling to the brain, where pain perception occurs.
In addition, pain perception can be transmitted directly from the site of injury to the CNS via a humoral signal (probably via interleukin [IL]-6), which then induces cyclooxygenase (COX)-2 in the CNS.1 This concept will be discussed in greater detail later in the presentation.
Samad TA, Moore KA, Sapirstein A, et al. Interleukin-1-mediated induction of COX-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410:471-475.
Transducer receptor/ion channel complexes on peripheral nociceptor terminals respond to noxious stimuli from mechanical, chemical, or heat sources by generating depolarizing currents. If the current is sufficient, action potentials are initiated and then conducted to the CNS, where they invade central nociceptor terminals and cause the release of neurotransmitters, thus eliciting pain perception.
Depicted here is the activation of vanilloid receptor VR1 by noxious heat stimuli, resulting in the generation of action potentials that travel to the spinal cord to cause the release of transmitters.1
Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288:1765-1768.
Modulation is a result of receptor/ion channel phosphorylation, which causes a change in the expression of channels on the surface of primary sensory neurons. Sensitizing agents such as prostaglandin E2 (PGE2) and bradykinin released during tissue damage or by inflammatory cells sensitize nociceptor terminals. Nociceptors undergo modulation as a result of simultaneous activation of the intracellular kinase protein kinase A (PKA) or protein kinase C (PKC), the phosphorylation of a tetrodotoxin (TTX)-resistant sensory neuronspecific sodium ion channel (SNS; also referred to as SNS/PN3), and possibly the phosphorylation of VR1. Phosphorylation of SNS channels causes an influx of sodium ions. Consequently, the excitability of nociceptor terminal membranes increases, and peripheral nociceptors become more sensitive to subsequent stimuli.1
Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288:1765-1768.
Following mild noxious stimuli, dorsal horn neurons are activated primarily by fast excitatory postsynaptic potentials (EPSPs) produced by unmyelinated nociceptive C-fibers. These fast EPSPs signal the onset, duration, intensity, and location of the stimulus. More intense stimuli generate higher frequency inputs and cause the synaptic release of glutamate and other neuromodulators, such as substance P, from the C-fibers to act on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). This produces slow EPSPs lasting tens of seconds.1
Repeated stimulation allows for temporal summation of slow EPSPs, resulting in the removal of the magnesium blockade on N-methyl D-aspartate (NMDA) channels.1 The increased current through the NMDA channels enhances the cumulative depolarization caused by slow EPSPs. The result is a windup of action potential discharge on central pain-projecting neurons and neuronal modulation.1,2
Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288:1765-1768.
Schwartzman RJ, Grothusen J, Kiefer TR, et al. Neuropathic central pain: epidemiology, etiology, and treatment options. Arch Neurol. 2001;58:1547-1550.