Meredith L. Rawls presented her PhD thesis defense on April 8, 2016 on the topic of using red giants in eclipsing binary systems as benchmarks for asteroseismology. She discussed how eclipsing binaries allow direct measurement of stellar properties like mass and radius, while asteroseismology provides a powerful tool to characterize many stars quickly using only light curves. Her research involved studying oscillating red giants in eclipsing binaries to explore discrepancies between theoretical expectations of oscillations and observations. She characterized several eclipsing binary systems containing red giants using both asteroseismology and binary modeling techniques to precisely determine the stars' properties.
1 of 38
Download to read offline
More Related Content
Meredith Rawls' PhD Defense
1. Red Giants in Eclipsing Binaries as
a Benchmark for Asteroseismology
Meredith L. Rawls
Department of Astronomy
New Mexico State University
April 8, 2016 PhD Thesis Defense
@merrdiff
Image: G Perez, IAC, SMM
2. Meredith L. Rawls @merrdiff
Eclipsing binaries with light curves and radial
velocities let us directly measure M, R
Asteroseismology is a powerful tool to characterize
lots of stars quickly, using light curves alone
We can study oscillating stars in eclipsing binaries
from two independent perspectives
A set of well-characterized binaries lets us explore
why some dont oscillate when we think they should
How to measure stellar properties?
5. Meredith L. Rawls @merrdiff
Larger stars oscillate more slowly
Evolved giants: hoursdays
Sun-like stars: minutes
Stochastic ringing oscillations
in stars convective zones
100 亮Hz 1 mHz 500 Hz
Figure concept: P. Gaulme
6. Solar-like oscillations tell us about
a stars mean gravity and density
Meredith L. Rawls @merrdiff
僚
僚max
Power
Frequency 僚
Acoustic pressure modes
Buoyant gravity modes
Scaling relations
7. Meredith L. Rawls @merrdiff
Chaplin & Miglio 2013
left side x-axis range
MS
MS
Subgiant
Subgiant
RGB
base
RGB
RGB
RGB
Red
clump
8. Meredith L. Rawls @merrdiff
Kepler red giant catalog: ~14,000
Kepler eclipsing binary catalog: 2,500+
After cross-correlating: 19
Most systems are SB2, but 4 are SB1
Most are oscillators, but 4 are not
Searching for red giants in
eclipsing binary systems
Gaulme et al. 2013, 2014
9. Meredith L. Rawls @merrdiff
Process light curves to 鍖ll
eclipses and remove gaps
Single set of oscillations
Broad and damped modes
Evolved onto the red clump
Characterizing a star: asteroseismology
70 80 90 100 110 120 130 140
Frequency (袖Hz)
0
100
200
300
400
500
600
700
800
SmoothedPowerDensity(ppm2
袖Hz1
)
0
100
200
300
400
500
600
700
800
KIC 9246715
Reference star
Rawls et al. 2016
KIC 9246715
10. Meredith L. Rawls @merrdiff
Characterizing a star: binary modeling
Process Kepler light curve to
preserve eclipses
Extract radial velocities from
spectra via the broadening function
Get all velocities on one zeropoint
Suite of broadening function
programs in python:
github.com/mrawls/BF-rvplotter
Rawls et al. 2016
0.0
0.2
0.4 0.773
2012-03-01
TRES 0.831
2012-03-11
TRES 0.960
2012-04-02
TRES 0.170
2012-05-08
TRES
0.0
0.2
0.4 0.275
2012-05-26
TRES 0.316
2012-06-02
TRES 0.374
2012-06-12
ARCES 0.460
2012-06-27
ARCES
0.0
0.2
0.4 0.479
2012-06-30
TRES 0.618
2012-07-24
TRES 0.811
2012-08-26
ARCES 0.812
2012-08-26
ARCES
0.0
0.2
0.4 0.817
2012-08-27
ARCES 0.864
2012-09-04
ARCES 0.869
2012-09-05
TRES 0.015
2012-09-30
TRES
0.0
0.2
0.4 0.155
2012-10-24
TRES 0.318
2012-11-21
TRES 0.091
2013-04-02
TRES
60 40 20 0 20 40 60
0.196
2013-04-20
ARCES
60 40 20 0 20 40 60
0.0
0.2
0.4 0.511
2013-06-13
ARCES
60 40 20 0 20 40 60
0.982
2013-09-02
ARCES
60 40 20 0 20 40 60
0.023
2013-09-09
ARCES
Smoothed BF
Two-Gaussian 鍖t
Uncorrected Radial Velocity (km s1
)
BroadeningFunction KIC 9246715
11. Meredith L. Rawls @merrdiff
Characterizing a star: binary modeling
9.30
9.35
9.40
9.45
9.50
Magnitude
ELC Model
60
40
20
0
20
40
RadialVelocity(kms1
)
0.0 0.2 0.4 0.6 0.8 1.0
0.004
0.000
0.004
2
0
2
9.25
9.30
9.35
9.40
9.45
9.50
Magnitude
0.20 0.21 0.22 0.23
0.004
0.000
0.004
0.49 0.50 0.51 0.52
Orbital Phase (conjunction at = 0.5)
Secondary Primary
Double red giant KIC 9246715
Stars are nearly twins; eclipse
depths vary due to geometry
Simultaneously 鍖t radial
velocities and light curve
Minimize 2 with 16 free
parameters using DE-MCMC
optimizers
Rawls et al. 2016
Radial
velocities
Kepler
light curve
Eclipse
zoom
KIC 9246715
13. Meredith L. Rawls @merrdiff
Putting the pieces together KIC 9246715
2.15 M, 8.30 R
2.17 M, 8.37 R
14. Meredith L. Rawls @merrdiff
Putting the pieces together
200 400 600 800 1000 1200 1400
98.5
99
99.5
100
100.5
Time (BJD - 2454833)
I/I(%)
?
KIC 9246715
Rawls et al. 2016
2.15 M, 8.30 R
2.17 M, 8.37 R
15. Meredith L. Rawls @merrdiff
KIC 9246715 is in good company
Oscillation modes are damped or
missing in many red giant binaries
All modes affected equally
Compare properties of binaries with
strong, damped, and no oscillations
Determine what physical conditions
prevent resonant convection zones
Some other systems also show
damped or absent oscillations
no oscillations
僚max ~ 4 亮Hz
僚max ~ 80 亮Hz
Gaulme et al. 2013
16. Meredith L. Rawls @merrdiff
Fourier decomposition turns
dozens of composite spectra into
one spectrum per star
Stellar atmosphere modeling
Lines sensitive to magnetic 鍖elds
Suite of python programs to assist
with disentangling:
github.com/mrawls/FDBinary-tools
Disentangled spectra hold
clues to magnetic activity
One of 23 high-res spectra (light from both stars)
Star 1, Teff = 4990 賊 90 K
Star 2, Teff = 5030 賊 80 K
KIC 9246715
17. Meredith L. Rawls @merrdiff
Magnetically sensitive Fe I lines dont
differ from non-sensitive ones
Ca H & K lines too blue, noisy
Ca II 了了8498,8542 show no emission
Excess H留 absorption?
Orbital solution + light ratio both
needed for successful disentangling
Disentangled spectra hold
clues to magnetic activity5554 5557 5560
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Fei, mag
5572 5575 5578 5581
Fei, non-mag
5686 5689 5692 5695
Fei, non-mag
6298 6301 6304 6307
Fei, mag
6559 6562 6565
H留
6840 6844
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Fei, mag
7088 7092
Fei, non-mag
Observed
Model
Di鍖erence
8490 8500 8510 8520 8530 8540 8550
Caii 了了8498,8542
Wavelength (A)
ScaledFlux
5554 5557 5560
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Fei, mag
5572 5575 5578 5581
Fei, non-mag
5686 5689 5692 5695
Fei, non-mag
6298 6301 6304 6307
Fei, mag
6559 6562 6565
H留
6840 6844
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2 Fei, mag
7088 7092
Fei, non-mag
Observed
Model
Di鍖erence
8500 8510 8520 8530 8540
Caii 了了8498,8542
Wavelength (A)
ScaledFlux
Rawls et al. 2016
KIC 9246715
18. Meredith L. Rawls @merrdiff
Robotically-controlled 1m
telescope at APO
Kepler cannot measure color
Goal: compare eclipse 鍖uxes
with out-of-eclipse 鍖ux
Especially useful for red
giants with faint companions
Multi-band photometry potentially
constrains light ratio and temperatures
19. Meredith L. Rawls @merrdiff
Two non-oscillators
Mix of orbital periods (19 235 days)
Three with variability > 1%
Two with phase effects
Mix of eccentricities (< 0.001 0.38)
Observed the most in 1m campaign
Choosing a representative
subset of red giant binaries
21. Meredith L. Rawls @merrdiff
KIC 8702921
P = 19.4 days
e = 0.10
variability ~ 1.4%
No Ca II emission
Deep H留 line
The only SB1
in the sample
0.27 M
0.29 R
1.67 M
5.32 R
1/7
22. Meredith L. Rawls @merrdiff
KIC 9291629
1.11 M
1.83 R
1.13 M
7.93 R
P = 20.7 days
e = 0.0006
variability ~ 16%
Ca II net emission
Normal H留 line
Fast rotator
BVRI used in 鍖t
2/7
23. Meredith L. Rawls @merrdiff
KIC 3955867
0.92 M
0.97 R
1.10 M
8.24 R
P = 33.7 days
e = 0.01
variability ~ 23%
Ca II net emission
H留 not too deep
Fast rotator
3/7
24. Meredith L. Rawls @merrdiff
KIC 10001167
0.81 M
0.97 R
0.86 M
12.73 R
P = 120.4 days
e = 0.16
variability ~ 0.4%
No Ca II emission
Deep H留 line
Phase effects
4/7
25. Meredith L. Rawls @merrdiff
KIC 5786154
1.02 M
1.56 R
1.06 M
11.01 R
P = 197.9 days
e = 0.38
variability ~ 0.2%
No Ca II emission
Deep H留 line
Most eccentric
5/7
26. Meredith L. Rawls @merrdiff
KIC 7037405
1.15 M
1.74 R
1.27 M
13.72 R
P = 207.1 days
e = 0.23
variability ~ 0.2%
No Ca II emission
Deep H留 line
25 APOGEE RVs
McKeever+ in prep
6/7
27. Meredith L. Rawls @merrdiff
KIC 9970396
1.00 M
1.08 R
1.17 M
7.70 R
P = 235.3 days
e = 0.18
variability ~ 0.2%
No Ca II emission
Deep H留 line
Kepler LC gaps
BVRI used in 鍖t
7/7
28. Meredith L. Rawls @merrdiff
Seismic M, R are both too large
Densities and gravities nearly agree
Stars least like the Sun differ the most
Spectroscopic gravities are too high
The scaling relations
are not perfect
Coming soon: Gaulme et al. 2016
Mass Radius
Density
(僚)
Gravity
(僚max)
29. Meredith L. Rawls @merrdiff
The most active giants lack
oscillations, have short periods,
and are rotationally synchronous
They also show differential rotation
Ca II net emission agrees with
strongest photometric variability
H留 may trace chromospheric activity
Magnetic activity roundup
Robinson et al. 1990
30. Meredith L. Rawls @merrdiff
10 100 300
10
100
200
5866138
9246715
7377422
4473933
10015516
8430105
8435232
5179609
4569590
53087787133286
3955867
6307537
5193386
9291629
11235323
8702921
7943602
Porb [days]
Pvar[days]
5
: 1
4
: 1
3
: 1
2
: 1
1
: 1
1
2
: 1 Evidence for orbital &
rotational resonances
More stellar variability
Less stellar variability
Stronger oscillations
Weaker oscillations
Gaulme et al. 2014
and Ravenel et al. in prep
Binaries with no oscillations
more likely to be synchronized
Binaries with synchronization
more likely to be active (variable)
31. Meredith L. Rawls @merrdiff
MESA: 1D stellar pro鍖les over time
Initialize model with M & metallicity;
let star evolve to present R
KIC 9246715 contains the only red
clump stars in this sample
Adjusted mixing-length parameter
(increase ef鍖ciency of convection)
to get suf鍖ciently small RC stars
Stellar evolution models
constrain tidal history and age
KIC 9246715
32. Meredith L. Rawls @merrdiff
Depends on stellar evolution and
in鍖uence of companion star
e is a function of M, M2/M, Porb, I(t)
I(t) is a function of Teff(t), Menv(t), R(t)
Tidal forces over time
Verbunt & Phinney 1995
KIC 9246715
33. Meredith L. Rawls @merrdiff
Depends on stellar evolution and
in鍖uence of companion star
e is a function of M, M2/M, Porb, I(t)
I(t) is a function of Teff(t), Menv(t), R(t)
Tidal forces over time
Verbunt & Phinney 1995
M2/M = 0.989KIC 9291629
34. Meredith L. Rawls @merrdiff
Rotation synchronization should
happen before orbit circularization
Two most active giants with short
periods are nearly circularized
Eccentric systems have not had
enough time for tides to circularize
Two outliers/in-between cases
Predicted changes
in eccentricity
35. Prediction: a range of
oscillation populations
Meredith L. Rawls @merrdiff
Tidally-induced
heartbeat pulsations
No solar-like
oscillations
Damped solar-like
oscillations
Oscillates like
a single star
8702921
9291629
3955867
10001167
57861549246715
7037405
9970396
36. Meredith L. Rawls @merrdiff
Distances computed via
theoretical bolometric corrections,
updated KIC extinctions, & JHK
magnitudes from 2MASS
No clear galactic [Fe/H] gradient
Galactic context
Southworth et al. 2005
37. Meredith L. Rawls @merrdiff
Pipeline
comparisons
temperature
surface
gravity
metallicity
distance
38. Meredith L. Rawls @merrdiff
Solar-like oscillations are damped by
magnetism & tides, which often occur together
Most pronounced for short-period, spotty,
synchronized and circularized systems
The asteroseismic scaling relations are least
accurate for stars least like the Sun
Scaling relations overestimate giant M, R
These stars are references for survey pipelines
Asteroseismic surveys will tend to miss active
stars and close binaries
Red giant binaries are powerful
benchmarks for asteroseismology