Engineering microorganisms for synthesis of medicinally important molecules
The document discusses engineering microorganisms to synthesize medically important molecules through biocatalysis and biotransformations. Some key points:
- Microorganisms can be used to perform selective organic transformations and modify complex molecules through hydroxylation, oxidation, and other reactions.
- Examples of molecules synthesized or modified by microorganisms include epibatidine, modafinil, steroids, and other pharmaceuticals. Specific microorganisms like Beauveria bassiana and Amycolaptosis orientalis are mentioned.
- Lipases from sources like Candida antarctica can be used to catalyze reactions like hydrolysis, acetylation
1 of 54
Download to read offline
More Related Content
Engineering microorganisms for synthesis of medicinally important molecules
1. Engineering microorganisms for synthesis of medicinally
important molecules
Innovaci坦n Para el Desarrollo Sostenible, M辿rida. Mayo 2014
4. N
N
O H C
H
O H
OO
O A cH
N
H
N
H
O H
M e O
O
M e O
H O
O
H O
N
M e N
O
O
C O 2 M e
N
O
O
N
H
H
H
OH
O
H
H
HO
O
O
H
H
H
H
O
O H
OO H O H
O H
O H
O H
O
O
OH
H
H
H
OH
N
H
H
OH
H3C
N
O
O
H
Me
O
H
H
O
O
O
O
H
O HH
M e O
O
N H
O
O
M e O
H C l
O
OO H
H O
O H
O H
O H
O
O
OH OH
O
O
NO2
MeO
O
O
O
OO
O O
M e
M e
H H
O
NH2
MeO
OMe
MeO
N
H
N
O
P
O
O
HO
H
O
HO
MeO
OH
OH
OMe
6. Biocatalysis in Organic Chemistry
Why microorganisms to do organic
transformations?
Epibatidine an alkaloid from Ecuadorian frogs
Selective hydroxylation of a piperidine?
Modafinil a unique CNS stimulant
Other uses of lipases --Oxidations
7. The 12 Principles of Green Chemistry
1. It is better to prevent waste than to treat or clean up waste after it is formed.
2. Synthetic methods should be designed to maximize the incorporation of all materials
used in the process into the final product.
3. Wherever practicable, synthetic methodologies should be designed to use and
generate substances that possess little or no toxicity to human health and the
environment.
4. Chemical products should be designed to preserve efficacy of function while reducing
toxicity.
5. The use of auxiliary substances (e.g. solvents, separation agents, etc.) should be made
unnecessary wherever possible and innocuous when used.
6. Energy requirements should be recognized for their environmental and economic
impacts and should be minimized. Synthetic methods should be conducted at ambient
temperature and pressure.
7. A raw material or feedstock should be renewable rather than depleting wherever
technically and economically practicable.
8. Reduce derivatives - Unnecessary derivatization (blocking group, protection/
deprotection, temporary modification) should be avoided whenever possible.
9. Catalytic reagents (as selective as possible) are superior to stoichiometric reagents.
10.Chemical products should be designed so that at the end of their function they do not
persist in the environment and break down into innocuous degradation products.
11.Analytical methodologies need to be further developed to allow for real-time, in-
process monitoring and control prior to the formation of hazardous substances.
12.Substances and the form of a substance used in a chemical process should be chosen to
minimize potential for chemical accidents, including releases, explosions, and fires.
Paul Anastas & John Warner
9. Natural sources of steroids
Dioscorea mexicana, cabeza de negro
Dioscorea composita, barbasco
HO
O
O
H
H
H
H
diosgenine
10. Markers Degradation of diosgenine
H O
O
O
H
H
H
H
A c 2 O
2 0 0 C
A c O
O
H
H
H
H
O A c
d io s g e n in e
AcO
O
H
H
H
H
OAc
CrO3
AcOH
AcO
O
O OAc
O
Russell E. Marker
AcO
O
O OAc
O
NaOH
EtOH
HO
O
11. H O
O
O
O
O
O
O H
O
O
O
O H
O
O H
O
O H
M e
p ro g e s te ro n e a n d ro s te n e d io n e e th is te ro n e
te s to s te ro n e m e th y lte s to s te ro n e
h a lo te s tin
2 1 -h y d ro x y p ro g e s te ro n e
Laboratorios Syntex SA (1944)
O
O
O
O
?
13. Biotransformations
O
O
O
O
HO
O
O
O
O
H O
O
O
O H
O H
O
c o r t is o n e
R h iz o p u s a r r h iz u s
Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 1871
Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 5933
14. C l
P . p u t id a
m u t a n t s t r a in
C l
O H
O H
David T. Gibson
Tom叩邸 Hudlick箪
Jack Rosazza
17. Pros and cons of using whole cell
microorganisms
Form Pros Cons
Any No cofactor recycling
necessary
Expensive equipment, tedious
workup due to large volumes, low
productivity due to lower
concentration tolerance, low
tolerance of organic solvents, side
reactions likely due to
uncontrolled metabolism
Growing culture Higher activities Large biomass, more byproducts,
process control difficult
Resting cells Workup easier, fewer
byproducts
lower activities
Immobilized cells Cell re-use possible lower activities
18. Pros and cons of using isolated enzymes
Form Pros Cons
Any Simple apparatus,
Simple workup, better
productivity due to higher
concentration tolerance
Cofactor recycling necessary
Dissolved in water High enzyme activity Side reactions possible,
lipophilic substrates insoluble,
workup requires extraction
Suspended in organic solvents Easy to perform, easy
workup, lipophilic substrates
soluble, enzyme recovery
easy
Reduced activities
Immobilized Enzyme recovery easy Loss of activity during
immobilization
19. epibatidine
o Isolation: from the skin of poison frogs Epipedobates tricolor in Ecuador
(< 1 mg from 700 frogs)
o Daly JW et al J. Am. Chem. Soc. 1992, 114, 3475.
o Biological Activity: Pain killer hundreds of times more potent than morphine
o Mode of Action: Found to act on nicotinic receptors, not opioid receptors!
o Synthesis was needed!
H
N
N Cl
epibatidine
John W. Daly (March 5, 2008)Epipedobates tricolor
20. Can microorganisms help us shorten the route to
epibatidine?
N
R
N
R
OH
microorganism
H
N
N C l
N
R
O H
N
R
O
+
N C l
I
N C l
21. Johnson RA, Herr ME, Murray HC, Reineke LM, Fonken GS J. Org. Chem. 1968, 33, 3195
N
C O P h
N
C O P h
H O
N
C O P h
H O
+
B e a u v e r ia b a s s ia n a
4 5 - 7 0 %
NCOPh NCOPh
HOBeauveriabassiana
45-70%
Hydroxylation of unfunctionalized carbons
22. Olivo HF, Hemenway MS, Gezginci MH Tetrahedron Lett. 1998, 39, 1309
Olivo HF, Hemenway MS J. Org. Chem. 1999, 64, 8968
O H
N H 2
i . B e n z o y l c h l o r i d e
E t 3 N , C H 2 C l 2 , 1 0 0 %
i i . C H 3 S O 2 C l
E t 3 N , C H 2 C l 2 , 7 8 %
i i i . K O t - B u , D M F
8 8 %
N
O
i v . B . b a s s i a n a
5 6 % , 2 2 % e e
N
O
O H
H
N
N C l
v . T P A P , N M O
C H 2 C l 2 , 8 9 %
N
O
O
v i . 2 - c h l o r o
5 - i o d o p y r i d i n e
n - B u L i , T H F
- 7 8 C , 7 8 %
N
O
O H
N C l
v i i . C H 3 O ( C O ) 2 C l
2 , 6 - l u t i d i n e , D M A P , 1 0 0 %
v i i i . B u 3 S n H
A I B N , 9 8 %
N
O
H
N C l i x . t - B u O K , t - B u O H
1 0 0 C , 3 3 %
x . 6 N H C l
1 0 0 C , 9 4 %
r a c - e p i b a t i d i n e
23. Biotransformation of
N-acetylphenyl-Piperidine
N
O B e a u v e r ia s u lf u r e s c e n s
A T C C - 7 1 5 9
N
O
H O
3 d a y s , 2 0 % ( J o h n s o n , 1 9 9 2 )
5 d a y s , 6 6 % ( R o b e r t s , 1 9 9 8 )
3 d a y s , 2 0 - 4 0 % ( H o lla n d , 1 9 9 9 )
24. Not a clean reaction
O
O
N
H O
N
N
N
O
O
H
H
H
N
O
O H
H O
N
O H
O
N
O
O H
O M e
H O
H O
N H O
O
O H
N
O
O H
Osorio V, Tovar R, Olivo HF J. Molecular Catalysis: Enzymatic 1998, 55, 30-36.
25. modafinil
S
N H 2
OO
Novel CNS stimulant used clinically to treat narcolepsy [Provigil, by Cephalon]
Unlike other CNS stimulants, it has a low abuse potential
Gold LH, Balster RL Psychopharmacology 1996, 126, 286-292.
Currently being evaluated as a new treatment for ADHD, anticonvulsant, and
treatment of cocaine and methamphetamine addiction
Mechanism of action to promote wakefulness is currently unknown
26. Olivo HF, Osorio-Lozada A, Prisinzano T Tetrahedron: Asymmetry 2004, 15, 3811
Olivo HF, Osorio-Lozada A, Peeples TL Tetrahedron: Asymmetry 2005, 16, 3507
Olivo HF and Osorio-Lozada A. US Patent US Serial No. 11/460,532
modafinil synthesis
O H + H S
O H
O
i. t r if lu o r o a c e t ic a c id
9 9 %
S
O H
O
S
OH
O
ii.Amycolaptosisorientalis
65%
S
NH2
OO
(R,S)-modafinil
27. Olivo HF, Osorio-Lozada A, Prisinzano T Tetrahedron: Asymmetry 2004, 15, 3811
Olivo HF, Osorio-Lozada A, Peeples TL Tetrahedron: Asymmetry 2005, 16, 3507
Olivo HF and Osorio-Lozada A. US Patent US Serial No. 11/460,532
modafinil synthesis
O H + H S
O H
O
i. t r if lu o r o a c e t ic a c id
9 9 %
S
O H
O
S
OH
OO
ii.Bacillussubtilis
99%ee,68%
S
NH2
OO
(S)-modafinil
S
OH
O
ii.Beauveriabassiana
99%ee,89%
S
OH
OO
(S)-modafinicacid
29. Lipases
Candida antarctica lipase-B
Enzyme isolated originally from Antarctica
317 amino acid residues, formula wt 33 273 Da
3-Dimensional structure determined
Ser105-His224-Asp187 cat. triad
Enzyme expressed in Aspergillus oryzae
Immobilized on acrylic resin
Potential Applications:
Detergents
Pulp and paper industry
Fine chemicals (broad substrate specificity
30. Lipases
Hydrolysis / Acylation
O
O
O
O
O
O
H 2 O
O
O
O
O H
O
H O
O
lip a s e
+
O
O H
O
O H
E t O H
E t O H
O
O E t
O
O E t
H 2 O
H 2 O
l i p a s e
k 1
l i p a s e
k 2
+
+
+
+
OH
OH
AcOH
AcOH
OAc
OAc
H2O
H2O
+
+
lipase
k2
lipase
k1
+
+
37. Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926
Alkene Epoxide Time Yield
O 40 hr 83%
O 2 hr 100%
Ph Ph
O 28 hr 100%
O 11 hr 100%
O
H
60 hr 90%
O
5.5 hr 95%
38. Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926
Alkene Epoxide Time Yield
O 161 hr 73%
O 46 hr 85%
O
33 hr 81%
O
46 hr 90%
O
46 hr 86%
O 50 hr
72 hr
77%
96%
40. Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926
Cyclohexanone Caprolactone Time Yield
O
O
O
6 d 80%
O
Ph
O
O
Ph
8 d 75%
O
O
O
3 d 95%
O
O
O
12 d
19 d
68%
78%
O
O
O
26 d 8%
41. Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926
Cyclohexanone Caprolactone Time Yield
O
O
O
6 d 80%
O
O
O
8 d 75%
O
O
O
3 d 95%
O
O
O
12 d
19 d
68%
78%
O
O
O
26 d 8%
44. Lipase from Aspergillus 0%
Lipase from Candida antarctica 0%
Lipase from Candida rugosa 0%
Lipase from Mucor miehei 0%
Lipase from Pseudomonas cepacia 0%
Lipase from Pseudomonas fluorescens 0%
Lipase from Rhizopus arrhizus 0%
Lipase from Rhizopus niveus 0%
Lipase from hog pancreas 0%
N CO3H
O2N
NO2
N CO2H
O2N
NO2
O
lipase
UHP
1,2-dichloroethane
47. A Osorio-Lozada and HF Olivo. Organic Letters 2008, 10, 617.
Chemo-enzymatic synthesis of indene
49. Microorganisms in Organic Synthesis
Synthesis of epibatidine
Synthesis of modafinil
Synthesis of chiral building blocks
Enzymes in Organic Synthesis
Resolution of alcohols and acid derivatives
Perhydrolysis of carboxylic acids
Epoxidations
Baeyer-Villiger oxidations
New chiral auxiliares
Summary
52. Past and Present members
Michael S. Hemenway (PhD 00)
Francisco Velazquez (PhD 03)
Dr. Srinivas Pusuluri
Dr. Henrique Trevisan
Dr. Yolanda Rios
Dr. Moises Romero
Dr. Nury Hernandez
Dr. Efrain Barragan
Dr. Ricardo Tovar
Dr. Adrian Ochoa
Dr. Patricia Mendez
Dr. Silvia Balbo
Dr. Suresh Wagmode
Dr. Lemuel Perez
Dr. Luis Hernandez
Dr. Veronica Rivas
Rodolfo Tello (PhD 08)
Antonio Osorio (PhD 08)
David A. Colby
Seth Sarduy
Mathis Hodge
Sena Dzakuma
Esdrey Rodriguez
Claudia Rojas
Laura Munive
Dr. Victor Gomez
Ernane De Souza
Gerardo Perez
Alvin De Gall
Moman Nazir