際際滷

際際滷Share a Scribd company logo
Engineering microorganisms for synthesis of medicinally
important molecules
Innovaci坦n Para el Desarrollo Sostenible, M辿rida. Mayo 2014
Engineering microorganisms for synthesis of medicinally important molecules
Engineering microorganisms for synthesis of medicinally important molecules
N
N
O H C
H
O H
OO
O A cH
N
H
N
H
O H
M e O
O
M e O
H O
O
H O
N
M e N
O
O
C O 2 M e
N
O
O
N
H
H
H
OH
O
H
H
HO
O
O
H
H
H
H
O
O H
OO H O H
O H
O H
O H
O
O
OH
H
H
H
OH
N
H
H
OH
H3C
N
O
O
H
Me
O
H
H
O
O
O
O
H
O HH
M e O
O
N H
O
O
M e O
H C l
O
OO H
H O
O H
O H
O H
O
O
OH OH
O
O
NO2
MeO
O
O
O
OO
O O
M e
M e
H H
O
NH2
MeO
OMe
MeO
N
H
N
O
P
O
O
HO
H
O
HO
MeO
OH
OH
OMe
Tarahumaras
Biocatalysis in Organic Chemistry
 Why microorganisms to do organic
transformations?
 Epibatidine  an alkaloid from Ecuadorian frogs
 Selective hydroxylation of a piperidine?
 Modafinil  a unique CNS stimulant
 Other uses of lipases --Oxidations
The 12 Principles of Green Chemistry
1. It is better to prevent waste than to treat or clean up waste after it is formed.
2. Synthetic methods should be designed to maximize the incorporation of all materials
used in the process into the final product.
3. Wherever practicable, synthetic methodologies should be designed to use and
generate substances that possess little or no toxicity to human health and the
environment.
4. Chemical products should be designed to preserve efficacy of function while reducing
toxicity.
5. The use of auxiliary substances (e.g. solvents, separation agents, etc.) should be made
unnecessary wherever possible and innocuous when used.
6. Energy requirements should be recognized for their environmental and economic
impacts and should be minimized. Synthetic methods should be conducted at ambient
temperature and pressure.
7. A raw material or feedstock should be renewable rather than depleting wherever
technically and economically practicable.
8. Reduce derivatives - Unnecessary derivatization (blocking group, protection/
deprotection, temporary modification) should be avoided whenever possible.
9. Catalytic reagents (as selective as possible) are superior to stoichiometric reagents.
10.Chemical products should be designed so that at the end of their function they do not
persist in the environment and break down into innocuous degradation products.
11.Analytical methodologies need to be further developed to allow for real-time, in-
process monitoring and control prior to the formation of hazardous substances.
12.Substances and the form of a substance used in a chemical process should be chosen to
minimize potential for chemical accidents, including releases, explosions, and fires.
Paul Anastas & John Warner
Hormone Steroids
O
O
H
H
H
HO
O
H
H
H
O
OH
H
H
H
O
O
H
H
H
O
OH
OH
O
OHC
H
H
H
HO
OH
O
progesterone estrone testosterone
cortisone aldosterone
Natural sources of steroids
Dioscorea mexicana, cabeza de negro
Dioscorea composita, barbasco
HO
O
O
H
H
H
H
diosgenine
Markers Degradation of diosgenine
H O
O
O
H
H
H
H
A c 2 O
2 0 0 C
A c O
O
H
H
H
H
O A c
d io s g e n in e
AcO
O
H
H
H
H
OAc
CrO3
AcOH
AcO
O
O OAc
O
Russell E. Marker
AcO
O
O OAc
O
NaOH
EtOH
HO
O
H O
O
O
O
O
O
O H
O
O
O
O H
O
O H
O
O H
M e
p ro g e s te ro n e a n d ro s te n e d io n e e th is te ro n e
te s to s te ro n e m e th y lte s to s te ro n e
h a lo te s tin
2 1 -h y d ro x y p ro g e s te ro n e
Laboratorios Syntex SA (1944)
O
O
O
O
?
Biotransformations
O
O
O
O
HO
Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 1871
Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 5933
Biotransformations
O
O
O
O
HO
O
O
O
O
H O
O
O
O H
O H
O
c o r t is o n e
R h iz o p u s a r r h iz u s
Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 1871
Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 5933
C l
P . p u t id a
m u t a n t s t r a in
C l
O H
O H
David T. Gibson
Tom叩邸 Hudlick箪
Jack Rosazza
NH
O
O
OH O
OH
OH
OH
HO
OH
OH
X
X
X
O
O
N
OH OH
OH
OH
NH
O
O
H
N
HO
HO
OHH
O
HO
HO
NMe
microorganism
kifunensin
pancratistatin morphine
trihydroxyheliotridane
OH
O
O
O
HO
O
OH
O
OMe
OH
OO
N
HO
erythromycin
N
H
N
O
O
H
CO2H
penicillin
Biotechnology
insulin
Isolated from Streptomyces erythreus
Isolated from Penicillium fungi
Recombinant DNA
Pros and cons of using whole cell
microorganisms
Form Pros Cons
Any No cofactor recycling
necessary
Expensive equipment, tedious
workup due to large volumes, low
productivity due to lower
concentration tolerance, low
tolerance of organic solvents, side
reactions likely due to
uncontrolled metabolism
Growing culture Higher activities Large biomass, more byproducts,
process control difficult
Resting cells Workup easier, fewer
byproducts
lower activities
Immobilized cells Cell re-use possible lower activities
Pros and cons of using isolated enzymes
Form Pros Cons
Any Simple apparatus,
Simple workup, better
productivity due to higher
concentration tolerance
Cofactor recycling necessary
Dissolved in water High enzyme activity Side reactions possible,
lipophilic substrates insoluble,
workup requires extraction
Suspended in organic solvents Easy to perform, easy
workup, lipophilic substrates
soluble, enzyme recovery
easy
Reduced activities
Immobilized Enzyme recovery easy Loss of activity during
immobilization
epibatidine
o Isolation: from the skin of poison frogs Epipedobates tricolor in Ecuador
(< 1 mg from 700 frogs)
o Daly JW et al J. Am. Chem. Soc. 1992, 114, 3475.
o Biological Activity: Pain killer hundreds of times more potent than morphine
o Mode of Action: Found to act on nicotinic receptors, not opioid receptors!
o Synthesis was needed!
H
N
N Cl
epibatidine
John W. Daly (March 5, 2008)Epipedobates tricolor
Can microorganisms help us shorten the route to
epibatidine?
N
R
N
R
OH
microorganism
H
N
N C l
N
R
O H
N
R
O
+
N C l
I
N C l
Johnson RA, Herr ME, Murray HC, Reineke LM, Fonken GS J. Org. Chem. 1968, 33, 3195
N
C O P h
N
C O P h
H O
N
C O P h
H O
+
B e a u v e r ia b a s s ia n a
4 5 - 7 0 %
NCOPh NCOPh
HOBeauveriabassiana
45-70%
Hydroxylation of unfunctionalized carbons
Olivo HF, Hemenway MS, Gezginci MH Tetrahedron Lett. 1998, 39, 1309
Olivo HF, Hemenway MS J. Org. Chem. 1999, 64, 8968
O H
N H 2
i . B e n z o y l c h l o r i d e
E t 3 N , C H 2 C l 2 , 1 0 0 %
i i . C H 3 S O 2 C l
E t 3 N , C H 2 C l 2 , 7 8 %
i i i . K O t - B u , D M F
8 8 %
N
O
i v . B . b a s s i a n a
5 6 % , 2 2 % e e
N
O
O H
H
N
N C l
v . T P A P , N M O
C H 2 C l 2 , 8 9 %
N
O
O
v i . 2 - c h l o r o
5 - i o d o p y r i d i n e
n - B u L i , T H F
- 7 8 C , 7 8 %
N
O
O H
N C l
v i i . C H 3 O ( C O ) 2 C l
2 , 6 - l u t i d i n e , D M A P , 1 0 0 %
v i i i . B u 3 S n H
A I B N , 9 8 %
N
O
H
N C l i x . t - B u O K , t - B u O H
1 0 0 C , 3 3 %
x . 6 N H C l
1 0 0 C , 9 4 %
r a c - e p i b a t i d i n e
Biotransformation of
N-acetylphenyl-Piperidine
N
O B e a u v e r ia s u lf u r e s c e n s
A T C C - 7 1 5 9
N
O
H O
3 d a y s , 2 0 % ( J o h n s o n , 1 9 9 2 )
5 d a y s , 6 6 % ( R o b e r t s , 1 9 9 8 )
3 d a y s , 2 0 - 4 0 % ( H o lla n d , 1 9 9 9 )
Not a clean reaction
O
O
N
H O
N
N
N
O
O
H
H
H
N
O
O H
H O
N
O H
O
N
O
O H
O M e
H O
H O
N H O
O
O H
N
O
O H
Osorio V, Tovar R, Olivo HF J. Molecular Catalysis: Enzymatic 1998, 55, 30-36.
modafinil
S
N H 2
OO
 Novel CNS stimulant used clinically to treat narcolepsy [Provigil, by Cephalon]
 Unlike other CNS stimulants, it has a low abuse potential
 Gold LH, Balster RL Psychopharmacology 1996, 126, 286-292.
 Currently being evaluated as a new treatment for ADHD, anticonvulsant, and
treatment of cocaine and methamphetamine addiction
 Mechanism of action to promote wakefulness is currently unknown
Olivo HF, Osorio-Lozada A, Prisinzano T Tetrahedron: Asymmetry 2004, 15, 3811
Olivo HF, Osorio-Lozada A, Peeples TL Tetrahedron: Asymmetry 2005, 16, 3507
Olivo HF and Osorio-Lozada A. US Patent US Serial No. 11/460,532
modafinil synthesis
O H + H S
O H
O
i. t r if lu o r o a c e t ic a c id
9 9 %
S
O H
O
S
OH
O
ii.Amycolaptosisorientalis
65%
S
NH2
OO
(R,S)-modafinil
Olivo HF, Osorio-Lozada A, Prisinzano T Tetrahedron: Asymmetry 2004, 15, 3811
Olivo HF, Osorio-Lozada A, Peeples TL Tetrahedron: Asymmetry 2005, 16, 3507
Olivo HF and Osorio-Lozada A. US Patent US Serial No. 11/460,532
modafinil synthesis
O H + H S
O H
O
i. t r if lu o r o a c e t ic a c id
9 9 %
S
O H
O
S
OH
OO
ii.Bacillussubtilis
99%ee,68%
S
NH2
OO
(S)-modafinil
S
OH
O
ii.Beauveriabassiana
99%ee,89%
S
OH
OO
(S)-modafinicacid
Engineering microorganisms for synthesis of medicinally important molecules
Lipases
Candida antarctica lipase-B
Enzyme isolated originally from Antarctica
317 amino acid residues, formula wt 33 273 Da
3-Dimensional structure determined
Ser105-His224-Asp187 cat. triad
Enzyme expressed in Aspergillus oryzae
Immobilized on acrylic resin
Potential Applications:
 Detergents
 Pulp and paper industry
 Fine chemicals (broad substrate specificity
Lipases
Hydrolysis / Acylation
O
O
O
O
O
O
H 2 O
O
O
O
O H
O
H O
O
lip a s e
+
O
O H
O
O H
E t O H
E t O H
O
O E t
O
O E t
H 2 O
H 2 O
l i p a s e
k 1
l i p a s e
k 2
+
+
+
+
OH
OH
AcOH
AcOH
OAc
OAc
H2O
H2O
+
+
lipase
k2
lipase
k1
+
+
Lipases
-resolution
-acetylation of alcohols
OH
OH
O
O
O
O
OAc
OAc
OH
OH
acetaldehyde
+
+
lipase
k2
lipase
k1
+
+
O
Lipases
-resolution
-ester hydrolysis
O
O E t
O
O E t
H 2 O
H 2 O
O
O H
O
O H
E t O H
E t O H
+
+
lip a s e
k 2
lip a s e
k 1
+
+
Reaction mechanism
Asp187
O
O
N
N
His224
H
Ser105
O
H
N
Trp
H
Thr
NH R
O
O
R'
R
*RO
O
R*OH
Asp
O
O
N
N
His
H
Ser
O
H
N
Trp
H
Thr
NHR
O
O
Asp
O
O
N
N
His
H
Asp
O
O
N
N
His
H
Ser
O
H
N
Trp
H
Thr
NHR
O
O
R'
Ser
O
N
Trp
H
Thr
NHR
O
R'OH
free enzyme
acyl enzyme
Td1
Td2
R'
R1 OH
O
R1 O
O
R3
H2O
O R1
O
ser
H2O2
R1 N
H
O
R2
R1 O
O
O H
acyl-enzym e interm ediate
R3-OH
R2-NH2
Reaction mechanism
Nucleophile promiscuity
Lipases
-perhydrolysis
H2O2
O
OH
O
O
O
H
H2O
perhydrolase
+
+
Bjorkling, F.; Godtfredsen, S. E.; Kirk, M. L. J. Chem. Soc., Chem. Commun. 1990, 1301
Lipases
-perhydrolysis
-epoxidation
H2O2
O
O
O
O
O
H
EtOH+
perhydrolase
+
O
OH
O
O
O
O
O
H
O
EtOH H2O
H2O2
Candida antarctica
lipase B
Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926
Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926
Alkene Epoxide Time Yield
O 40 hr 83%
O 2 hr 100%
Ph Ph
O 28 hr 100%
O 11 hr 100%
O
H
60 hr 90%
O
5.5 hr 95%
Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926
Alkene Epoxide Time Yield
O 161 hr 73%
O 46 hr 85%
O
33 hr 81%
O
46 hr 90%
O
46 hr 86%
O 50 hr
72 hr
77%
96%
Lipases
-perhydrolysis
-Baeyer-Villiger oxidation
OH
O
O
O
O
O
H
O
EtOH H2O O
O
O
H2O2
Candida antarctica
lipase B
Rios MY, Salazar E, Olivo HF Green Chemistry 2007, 9, 459-462
Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926
Cyclohexanone Caprolactone Time Yield
O
O
O
6 d 80%
O
Ph
O
O
Ph
8 d 75%
O
O
O
3 d 95%
O
O
O
12 d
19 d
68%
78%
O
O
O
26 d 8%
Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926
Cyclohexanone Caprolactone Time Yield
O
O
O
6 d 80%
O
O
O
8 d 75%
O
O
O
3 d 95%
O
O
O
12 d
19 d
68%
78%
O
O
O
26 d 8%
Lipase-mediated proline-catalyzed epoxidation
Amrit Goswami. Tetrahedron 2007, 63, 8735.
N CO3H
O2N
NO2
N CO2H
O2N
NO2
O
lipase
UHP
1,2-dichloroethane
O
NO2
O
NO2
O2N O
O2N
O2N
O
O2N
Cl
O
Cl
Cl O
Cl
Cl
O
Cl
Alkene Epoxide Yield (%) ee (%)
73
80
85
77
79
65
76
75
81
76
80
77
75
80
Lipase from Aspergillus 0%
Lipase from Candida antarctica 0%
Lipase from Candida rugosa 0%
Lipase from Mucor miehei 0%
Lipase from Pseudomonas cepacia 0%
Lipase from Pseudomonas fluorescens 0%
Lipase from Rhizopus arrhizus 0%
Lipase from Rhizopus niveus 0%
Lipase from hog pancreas 0%
N CO3H
O2N
NO2
N CO2H
O2N
NO2
O
lipase
UHP
1,2-dichloroethane
N CO3H
O2N
NO2
N CO2H
O2N
NO2
O
DCC
UHP
dichloromethane
Chemical proline-mediated epoxidation
O
O2N
Cl
O
O2N
O
O
O
Cl
O
Alkene Epoxide Yield (%) ee (%)
74
59
57
72
48
12
00
00
00
00
00
00
A Osorio-Lozada and HF Olivo. Organic Letters 2008, 10, 617.
Chemo-enzymatic synthesis of indene
Engineering microorganisms for synthesis of medicinally important molecules
 Microorganisms in Organic Synthesis
Synthesis of epibatidine
Synthesis of modafinil
Synthesis of chiral building blocks
 Enzymes in Organic Synthesis
Resolution of alcohols and acid derivatives
Perhydrolysis of carboxylic acids
Epoxidations
Baeyer-Villiger oxidations
New chiral auxiliares
Summary
Engineering microorganisms for synthesis of medicinally important molecules
Some past members
Past and Present members
Michael S. Hemenway (PhD 00)
Francisco Velazquez (PhD 03)
Dr. Srinivas Pusuluri
Dr. Henrique Trevisan
Dr. Yolanda Rios
Dr. Moises Romero
Dr. Nury Hernandez
Dr. Efrain Barragan
Dr. Ricardo Tovar
Dr. Adrian Ochoa
Dr. Patricia Mendez
Dr. Silvia Balbo
Dr. Suresh Wagmode
Dr. Lemuel Perez
Dr. Luis Hernandez
Dr. Veronica Rivas
Rodolfo Tello (PhD 08)
Antonio Osorio (PhD 08)
David A. Colby
Seth Sarduy
Mathis Hodge
Sena Dzakuma
Esdrey Rodriguez
Claudia Rojas
Laura Munive
Dr. Victor Gomez
Ernane De Souza
Gerardo Perez
Alvin De Gall
Moman Nazir
Acknowledgments
Horacio F Olivo
horacio-olivo@uiowa.edu

More Related Content

Engineering microorganisms for synthesis of medicinally important molecules

  • 1. Engineering microorganisms for synthesis of medicinally important molecules Innovaci坦n Para el Desarrollo Sostenible, M辿rida. Mayo 2014
  • 4. N N O H C H O H OO O A cH N H N H O H M e O O M e O H O O H O N M e N O O C O 2 M e N O O N H H H OH O H H HO O O H H H H O O H OO H O H O H O H O H O O OH H H H OH N H H OH H3C N O O H Me O H H O O O O H O HH M e O O N H O O M e O H C l O OO H H O O H O H O H O O OH OH O O NO2 MeO O O O OO O O M e M e H H O NH2 MeO OMe MeO N H N O P O O HO H O HO MeO OH OH OMe
  • 6. Biocatalysis in Organic Chemistry Why microorganisms to do organic transformations? Epibatidine an alkaloid from Ecuadorian frogs Selective hydroxylation of a piperidine? Modafinil a unique CNS stimulant Other uses of lipases --Oxidations
  • 7. The 12 Principles of Green Chemistry 1. It is better to prevent waste than to treat or clean up waste after it is formed. 2. Synthetic methods should be designed to maximize the incorporation of all materials used in the process into the final product. 3. Wherever practicable, synthetic methodologies should be designed to use and generate substances that possess little or no toxicity to human health and the environment. 4. Chemical products should be designed to preserve efficacy of function while reducing toxicity. 5. The use of auxiliary substances (e.g. solvents, separation agents, etc.) should be made unnecessary wherever possible and innocuous when used. 6. Energy requirements should be recognized for their environmental and economic impacts and should be minimized. Synthetic methods should be conducted at ambient temperature and pressure. 7. A raw material or feedstock should be renewable rather than depleting wherever technically and economically practicable. 8. Reduce derivatives - Unnecessary derivatization (blocking group, protection/ deprotection, temporary modification) should be avoided whenever possible. 9. Catalytic reagents (as selective as possible) are superior to stoichiometric reagents. 10.Chemical products should be designed so that at the end of their function they do not persist in the environment and break down into innocuous degradation products. 11.Analytical methodologies need to be further developed to allow for real-time, in- process monitoring and control prior to the formation of hazardous substances. 12.Substances and the form of a substance used in a chemical process should be chosen to minimize potential for chemical accidents, including releases, explosions, and fires. Paul Anastas & John Warner
  • 9. Natural sources of steroids Dioscorea mexicana, cabeza de negro Dioscorea composita, barbasco HO O O H H H H diosgenine
  • 10. Markers Degradation of diosgenine H O O O H H H H A c 2 O 2 0 0 C A c O O H H H H O A c d io s g e n in e AcO O H H H H OAc CrO3 AcOH AcO O O OAc O Russell E. Marker AcO O O OAc O NaOH EtOH HO O
  • 11. H O O O O O O O H O O O O H O O H O O H M e p ro g e s te ro n e a n d ro s te n e d io n e e th is te ro n e te s to s te ro n e m e th y lte s to s te ro n e h a lo te s tin 2 1 -h y d ro x y p ro g e s te ro n e Laboratorios Syntex SA (1944) O O O O ?
  • 12. Biotransformations O O O O HO Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 1871 Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 5933
  • 13. Biotransformations O O O O HO O O O O H O O O O H O H O c o r t is o n e R h iz o p u s a r r h iz u s Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 1871 Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 5933
  • 14. C l P . p u t id a m u t a n t s t r a in C l O H O H David T. Gibson Tom叩邸 Hudlick箪 Jack Rosazza
  • 17. Pros and cons of using whole cell microorganisms Form Pros Cons Any No cofactor recycling necessary Expensive equipment, tedious workup due to large volumes, low productivity due to lower concentration tolerance, low tolerance of organic solvents, side reactions likely due to uncontrolled metabolism Growing culture Higher activities Large biomass, more byproducts, process control difficult Resting cells Workup easier, fewer byproducts lower activities Immobilized cells Cell re-use possible lower activities
  • 18. Pros and cons of using isolated enzymes Form Pros Cons Any Simple apparatus, Simple workup, better productivity due to higher concentration tolerance Cofactor recycling necessary Dissolved in water High enzyme activity Side reactions possible, lipophilic substrates insoluble, workup requires extraction Suspended in organic solvents Easy to perform, easy workup, lipophilic substrates soluble, enzyme recovery easy Reduced activities Immobilized Enzyme recovery easy Loss of activity during immobilization
  • 19. epibatidine o Isolation: from the skin of poison frogs Epipedobates tricolor in Ecuador (< 1 mg from 700 frogs) o Daly JW et al J. Am. Chem. Soc. 1992, 114, 3475. o Biological Activity: Pain killer hundreds of times more potent than morphine o Mode of Action: Found to act on nicotinic receptors, not opioid receptors! o Synthesis was needed! H N N Cl epibatidine John W. Daly (March 5, 2008)Epipedobates tricolor
  • 20. Can microorganisms help us shorten the route to epibatidine? N R N R OH microorganism H N N C l N R O H N R O + N C l I N C l
  • 21. Johnson RA, Herr ME, Murray HC, Reineke LM, Fonken GS J. Org. Chem. 1968, 33, 3195 N C O P h N C O P h H O N C O P h H O + B e a u v e r ia b a s s ia n a 4 5 - 7 0 % NCOPh NCOPh HOBeauveriabassiana 45-70% Hydroxylation of unfunctionalized carbons
  • 22. Olivo HF, Hemenway MS, Gezginci MH Tetrahedron Lett. 1998, 39, 1309 Olivo HF, Hemenway MS J. Org. Chem. 1999, 64, 8968 O H N H 2 i . B e n z o y l c h l o r i d e E t 3 N , C H 2 C l 2 , 1 0 0 % i i . C H 3 S O 2 C l E t 3 N , C H 2 C l 2 , 7 8 % i i i . K O t - B u , D M F 8 8 % N O i v . B . b a s s i a n a 5 6 % , 2 2 % e e N O O H H N N C l v . T P A P , N M O C H 2 C l 2 , 8 9 % N O O v i . 2 - c h l o r o 5 - i o d o p y r i d i n e n - B u L i , T H F - 7 8 C , 7 8 % N O O H N C l v i i . C H 3 O ( C O ) 2 C l 2 , 6 - l u t i d i n e , D M A P , 1 0 0 % v i i i . B u 3 S n H A I B N , 9 8 % N O H N C l i x . t - B u O K , t - B u O H 1 0 0 C , 3 3 % x . 6 N H C l 1 0 0 C , 9 4 % r a c - e p i b a t i d i n e
  • 23. Biotransformation of N-acetylphenyl-Piperidine N O B e a u v e r ia s u lf u r e s c e n s A T C C - 7 1 5 9 N O H O 3 d a y s , 2 0 % ( J o h n s o n , 1 9 9 2 ) 5 d a y s , 6 6 % ( R o b e r t s , 1 9 9 8 ) 3 d a y s , 2 0 - 4 0 % ( H o lla n d , 1 9 9 9 )
  • 24. Not a clean reaction O O N H O N N N O O H H H N O O H H O N O H O N O O H O M e H O H O N H O O O H N O O H Osorio V, Tovar R, Olivo HF J. Molecular Catalysis: Enzymatic 1998, 55, 30-36.
  • 25. modafinil S N H 2 OO Novel CNS stimulant used clinically to treat narcolepsy [Provigil, by Cephalon] Unlike other CNS stimulants, it has a low abuse potential Gold LH, Balster RL Psychopharmacology 1996, 126, 286-292. Currently being evaluated as a new treatment for ADHD, anticonvulsant, and treatment of cocaine and methamphetamine addiction Mechanism of action to promote wakefulness is currently unknown
  • 26. Olivo HF, Osorio-Lozada A, Prisinzano T Tetrahedron: Asymmetry 2004, 15, 3811 Olivo HF, Osorio-Lozada A, Peeples TL Tetrahedron: Asymmetry 2005, 16, 3507 Olivo HF and Osorio-Lozada A. US Patent US Serial No. 11/460,532 modafinil synthesis O H + H S O H O i. t r if lu o r o a c e t ic a c id 9 9 % S O H O S OH O ii.Amycolaptosisorientalis 65% S NH2 OO (R,S)-modafinil
  • 27. Olivo HF, Osorio-Lozada A, Prisinzano T Tetrahedron: Asymmetry 2004, 15, 3811 Olivo HF, Osorio-Lozada A, Peeples TL Tetrahedron: Asymmetry 2005, 16, 3507 Olivo HF and Osorio-Lozada A. US Patent US Serial No. 11/460,532 modafinil synthesis O H + H S O H O i. t r if lu o r o a c e t ic a c id 9 9 % S O H O S OH OO ii.Bacillussubtilis 99%ee,68% S NH2 OO (S)-modafinil S OH O ii.Beauveriabassiana 99%ee,89% S OH OO (S)-modafinicacid
  • 29. Lipases Candida antarctica lipase-B Enzyme isolated originally from Antarctica 317 amino acid residues, formula wt 33 273 Da 3-Dimensional structure determined Ser105-His224-Asp187 cat. triad Enzyme expressed in Aspergillus oryzae Immobilized on acrylic resin Potential Applications: Detergents Pulp and paper industry Fine chemicals (broad substrate specificity
  • 30. Lipases Hydrolysis / Acylation O O O O O O H 2 O O O O O H O H O O lip a s e + O O H O O H E t O H E t O H O O E t O O E t H 2 O H 2 O l i p a s e k 1 l i p a s e k 2 + + + + OH OH AcOH AcOH OAc OAc H2O H2O + + lipase k2 lipase k1 + +
  • 32. Lipases -resolution -ester hydrolysis O O E t O O E t H 2 O H 2 O O O H O O H E t O H E t O H + + lip a s e k 2 lip a s e k 1 + +
  • 34. R1 OH O R1 O O R3 H2O O R1 O ser H2O2 R1 N H O R2 R1 O O O H acyl-enzym e interm ediate R3-OH R2-NH2 Reaction mechanism Nucleophile promiscuity
  • 35. Lipases -perhydrolysis H2O2 O OH O O O H H2O perhydrolase + + Bjorkling, F.; Godtfredsen, S. E.; Kirk, M. L. J. Chem. Soc., Chem. Commun. 1990, 1301
  • 37. Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926 Alkene Epoxide Time Yield O 40 hr 83% O 2 hr 100% Ph Ph O 28 hr 100% O 11 hr 100% O H 60 hr 90% O 5.5 hr 95%
  • 38. Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926 Alkene Epoxide Time Yield O 161 hr 73% O 46 hr 85% O 33 hr 81% O 46 hr 90% O 46 hr 86% O 50 hr 72 hr 77% 96%
  • 39. Lipases -perhydrolysis -Baeyer-Villiger oxidation OH O O O O O H O EtOH H2O O O O H2O2 Candida antarctica lipase B Rios MY, Salazar E, Olivo HF Green Chemistry 2007, 9, 459-462
  • 40. Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926 Cyclohexanone Caprolactone Time Yield O O O 6 d 80% O Ph O O Ph 8 d 75% O O O 3 d 95% O O O 12 d 19 d 68% 78% O O O 26 d 8%
  • 41. Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926 Cyclohexanone Caprolactone Time Yield O O O 6 d 80% O O O 8 d 75% O O O 3 d 95% O O O 12 d 19 d 68% 78% O O O 26 d 8%
  • 42. Lipase-mediated proline-catalyzed epoxidation Amrit Goswami. Tetrahedron 2007, 63, 8735. N CO3H O2N NO2 N CO2H O2N NO2 O lipase UHP 1,2-dichloroethane
  • 43. O NO2 O NO2 O2N O O2N O2N O O2N Cl O Cl Cl O Cl Cl O Cl Alkene Epoxide Yield (%) ee (%) 73 80 85 77 79 65 76 75 81 76 80 77 75 80
  • 44. Lipase from Aspergillus 0% Lipase from Candida antarctica 0% Lipase from Candida rugosa 0% Lipase from Mucor miehei 0% Lipase from Pseudomonas cepacia 0% Lipase from Pseudomonas fluorescens 0% Lipase from Rhizopus arrhizus 0% Lipase from Rhizopus niveus 0% Lipase from hog pancreas 0% N CO3H O2N NO2 N CO2H O2N NO2 O lipase UHP 1,2-dichloroethane
  • 46. O O2N Cl O O2N O O O Cl O Alkene Epoxide Yield (%) ee (%) 74 59 57 72 48 12 00 00 00 00 00 00
  • 47. A Osorio-Lozada and HF Olivo. Organic Letters 2008, 10, 617. Chemo-enzymatic synthesis of indene
  • 49. Microorganisms in Organic Synthesis Synthesis of epibatidine Synthesis of modafinil Synthesis of chiral building blocks Enzymes in Organic Synthesis Resolution of alcohols and acid derivatives Perhydrolysis of carboxylic acids Epoxidations Baeyer-Villiger oxidations New chiral auxiliares Summary
  • 52. Past and Present members Michael S. Hemenway (PhD 00) Francisco Velazquez (PhD 03) Dr. Srinivas Pusuluri Dr. Henrique Trevisan Dr. Yolanda Rios Dr. Moises Romero Dr. Nury Hernandez Dr. Efrain Barragan Dr. Ricardo Tovar Dr. Adrian Ochoa Dr. Patricia Mendez Dr. Silvia Balbo Dr. Suresh Wagmode Dr. Lemuel Perez Dr. Luis Hernandez Dr. Veronica Rivas Rodolfo Tello (PhD 08) Antonio Osorio (PhD 08) David A. Colby Seth Sarduy Mathis Hodge Sena Dzakuma Esdrey Rodriguez Claudia Rojas Laura Munive Dr. Victor Gomez Ernane De Souza Gerardo Perez Alvin De Gall Moman Nazir