ݺߣ

ݺߣShare a Scribd company logo
SERGIO ENRIQUE ARANGO OSORNO, Chemical Eng .  Candidate to Master Science of Eng. (Environmental). [email_address] JORGE MONTOYA  Biologist MSc GUSTAVO PEÑUELA Chemical. PhD Research Teams: INTEGRA & GDCON Tecnological of Antioquia - University of Antioquia Medellín - Colombia 2010 METHANE PRODUCTION ASSESSMENT BY ANAEROBIC  CODIGESTION FROM STEM BANANA AND  CATTLE WASTE IN ANTIOQUIA, COLOMBIA 15 th International Scientific Congress. CNIC 2010. CUBA 1th July.
ANAEROBIC PROCESS
RAW MATERIAL TYPE  SPECIES   WEIGHT Kg manure/day  L/kg.VS.  %CH 4   Pigs 50  4,5 - 6  340 - 550  65 - 70  Cattle 400  25 -40  90 - 310  65  Horses 450  12 - 16  200 - 300  65  Sheep 45  2,5  90 - 310  63  Poultry 1, 5  0,06  310 - 620  60 Vegetables Wholesale Central 13000 6 - 12 60  Codigestion Wholesale C.  & L ivestock C. 23000 212 - 268 60
Colombia generates 1 `231.200 ton/y of waste stem banana and 14'700 000 ton/y in the world [1] .  CH 4  production is equal to 738 600 ton/year. [1]  SOTO, M. Banano cultivo y comercialización. San José de Costa Rica:  Editorial LIL, 1995. 648p. CH 4  ESTIMATION
STUDY AREA San Pedro de los Milagros Urabá “Banana” Region
¿How much will be affected kinetic and methane production by temperature in cattle anaerobic and banana stem vegetable wastes codigestion ? OUR RESEARCH QUESTION
GENERAL OBJECTIVE To evaluate temperature effect in mesophilic and thermophilic conditions in methane production from cattle and banana stem vegetable waste co-digestion.
SPECIFIC  OBJECTIVES To assess the influence of livestock/vegetable wastes in methane production during co-digestion. To determine kinetics of methane production at different temperatures. To determine the COD, total solids, fixed solids, volatile solids and humidity,   in livestock and vegetables waste co-digestion treatment.
EXPERIMENTAL DESIGN VARIABLE TEMP .   VARIABLE: SUBSTRATE  RATIO X = vegetable m/ (vegetable m + animal m) (%)   X1 = 0   X 2 =1/3 X3=2/3   X4 =100   (33.3)   (66.6)   T1 (25ºC)   T1, X1   T1, X2   T1, X3   T1, X4   T2 (35ºC)   T2, X1   T2, X2   T2, X3   T2, X4   T3 (45ºC)   T3, X1   T3, X2   T3, X3   T3, X4        Total Treatms. 12  Total assays 36
RESULTS
METHODS  TIME DURATION PROCEDURE LABORATORY ANALYSIS To take samples Livestock C.  O.M Animal Wholesale Central O.M vegetable STEM BANANA Mix and get  Xi: X1, X2, X3, X4 Analyze each sample X1, X2, X3 y X4  Do 3 repetition of each one to get Xij (12) Inicial Analysis (SST y SSV),  COD, humIdity, pH, conduct. Upload biorxtors  (12) up to one third Put stopper and valve, injection  N2 Heat bath Mary  a T cte  Analysis of CH4 x chromatography Analysis fin. (SST y SSV),  DQO, humidity, pH, conduct. Time = 40 days Analysis  microbiological  O.M. 40 day Time= 4 days
SAMPLE COLLECTIONS
UPLOAD ANAEROBIC BIOREACTORS
CH 4  PRODUCTION KINETICS (25°C)
CH 4  PRODUCTION KINETICS (35°C)
CH 4  PRODUCTION KINETICS (45°C)
CONCLUSION By increasing the temperature it can be obtained energy in methane structure from waste cattle and banana stem co-digestion, which are abundant in banana plantations and cattle areas in Colombia and other tropical countries, achieving a great reduction of greenhouse gases emissions.
REFERENCES ENERGIAS RENOVABLES 2004. ENERGIA BIOMASA. Dirección Nacional de Promoción. Subsecretaría de Energía Eléctrica. Secretaría de Energía. República Argentina. 2006. Cartilla técnica biodigestores. 2003. Corantioquia. ZAPATA, Alvaro. 2003. Utilización del biogás para generación de electricidad. Fundación CIPAV. Colombia. Políticas energéticas en Cuba: pasado y propuestas para el futuro. Programa de desarrollo de las fuentes nacionales de energía.  http://usuarios.lycos.es/biodieseltr/hobbies4.html  Flotats, X.,Campos, E.. 1997.  Aprovechamiento energéticos de residuos ganaderos. HESSAMI, Mir - Akbar  . Anaerobic digestion of household organic waste to produce biogas. 1996. FAN, Yao-Ting . 2005. Efficiente conversion of wheat straw into biohydrogen gas by cow dung compost.  Lay JJ, Li YY, Noike T. 1998. A mathematical model for methane production from landfill bioreactor. Journal of Environmental  Engineering ASCE 1998;124:730–6. Lixiviados en los vertederos de residuos sólidos: su incidencia en la extracción de biogás. Tubkal Catalunya, S. L..  Lin CY, Lay CH. Carbon/nitrogen-ratio effect on fermentative hydrogen  production by mixed microflora. International Journal of Hydrogen Energy 2004;29:41–5.
THANKS CONTACT [email_address]

More Related Content

Methane production assessment by anaerobic codigestion from stem banana and cattle waste

  • 1. SERGIO ENRIQUE ARANGO OSORNO, Chemical Eng . Candidate to Master Science of Eng. (Environmental). [email_address] JORGE MONTOYA Biologist MSc GUSTAVO PEÑUELA Chemical. PhD Research Teams: INTEGRA & GDCON Tecnological of Antioquia - University of Antioquia Medellín - Colombia 2010 METHANE PRODUCTION ASSESSMENT BY ANAEROBIC CODIGESTION FROM STEM BANANA AND CATTLE WASTE IN ANTIOQUIA, COLOMBIA 15 th International Scientific Congress. CNIC 2010. CUBA 1th July.
  • 3. RAW MATERIAL TYPE SPECIES WEIGHT Kg manure/day L/kg.VS. %CH 4 Pigs 50 4,5 - 6 340 - 550 65 - 70 Cattle 400 25 -40 90 - 310 65 Horses 450 12 - 16 200 - 300 65 Sheep 45 2,5 90 - 310 63 Poultry 1, 5 0,06 310 - 620 60 Vegetables Wholesale Central 13000 6 - 12 60 Codigestion Wholesale C. & L ivestock C. 23000 212 - 268 60
  • 4. Colombia generates 1 `231.200 ton/y of waste stem banana and 14'700 000 ton/y in the world [1] . CH 4 production is equal to 738 600 ton/year. [1] SOTO, M. Banano cultivo y comercialización. San José de Costa Rica: Editorial LIL, 1995. 648p. CH 4 ESTIMATION
  • 5. STUDY AREA San Pedro de los Milagros Urabá “Banana” Region
  • 6. ¿How much will be affected kinetic and methane production by temperature in cattle anaerobic and banana stem vegetable wastes codigestion ? OUR RESEARCH QUESTION
  • 7. GENERAL OBJECTIVE To evaluate temperature effect in mesophilic and thermophilic conditions in methane production from cattle and banana stem vegetable waste co-digestion.
  • 8. SPECIFIC OBJECTIVES To assess the influence of livestock/vegetable wastes in methane production during co-digestion. To determine kinetics of methane production at different temperatures. To determine the COD, total solids, fixed solids, volatile solids and humidity, in livestock and vegetables waste co-digestion treatment.
  • 9. EXPERIMENTAL DESIGN VARIABLE TEMP . VARIABLE: SUBSTRATE RATIO X = vegetable m/ (vegetable m + animal m) (%) X1 = 0 X 2 =1/3 X3=2/3 X4 =100 (33.3) (66.6) T1 (25ºC) T1, X1 T1, X2 T1, X3 T1, X4 T2 (35ºC) T2, X1 T2, X2 T2, X3 T2, X4 T3 (45ºC) T3, X1 T3, X2 T3, X3 T3, X4 Total Treatms. 12 Total assays 36
  • 11. METHODS TIME DURATION PROCEDURE LABORATORY ANALYSIS To take samples Livestock C. O.M Animal Wholesale Central O.M vegetable STEM BANANA Mix and get Xi: X1, X2, X3, X4 Analyze each sample X1, X2, X3 y X4 Do 3 repetition of each one to get Xij (12) Inicial Analysis (SST y SSV), COD, humIdity, pH, conduct. Upload biorxtors (12) up to one third Put stopper and valve, injection N2 Heat bath Mary a T cte Analysis of CH4 x chromatography Analysis fin. (SST y SSV), DQO, humidity, pH, conduct. Time = 40 days Analysis microbiological O.M. 40 day Time= 4 days
  • 14. CH 4 PRODUCTION KINETICS (25°C)
  • 15. CH 4 PRODUCTION KINETICS (35°C)
  • 16. CH 4 PRODUCTION KINETICS (45°C)
  • 17.
  • 18.
  • 19. CONCLUSION By increasing the temperature it can be obtained energy in methane structure from waste cattle and banana stem co-digestion, which are abundant in banana plantations and cattle areas in Colombia and other tropical countries, achieving a great reduction of greenhouse gases emissions.
  • 20. REFERENCES ENERGIAS RENOVABLES 2004. ENERGIA BIOMASA. Dirección Nacional de Promoción. Subsecretaría de Energía Eléctrica. Secretaría de Energía. República Argentina. 2006. Cartilla técnica biodigestores. 2003. Corantioquia. ZAPATA, Alvaro. 2003. Utilización del biogás para generación de electricidad. Fundación CIPAV. Colombia. Políticas energéticas en Cuba: pasado y propuestas para el futuro. Programa de desarrollo de las fuentes nacionales de energía. http://usuarios.lycos.es/biodieseltr/hobbies4.html Flotats, X.,Campos, E.. 1997. Aprovechamiento energéticos de residuos ganaderos. HESSAMI, Mir - Akbar . Anaerobic digestion of household organic waste to produce biogas. 1996. FAN, Yao-Ting . 2005. Efficiente conversion of wheat straw into biohydrogen gas by cow dung compost. Lay JJ, Li YY, Noike T. 1998. A mathematical model for methane production from landfill bioreactor. Journal of Environmental Engineering ASCE 1998;124:730–6. Lixiviados en los vertederos de residuos sólidos: su incidencia en la extracción de biogás. Tubkal Catalunya, S. L.. Lin CY, Lay CH. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy 2004;29:41–5.