The document discusses methane production from co-digestion of cattle waste and banana stem waste in Antioquia, Colombia. It aims to evaluate the effect of temperature on methane production under mesophilic (25°C) and thermophilic (35°C, 45°C) conditions using different substrate ratios of vegetable and animal waste. The experimental design involves testing 12 treatments with different temperature and substrate ratio combinations over 40 days. The results show that increasing the temperature can produce more methane from co-digesting the abundant cattle and banana wastes in Colombia, helping reduce greenhouse gas emissions.
1 of 21
Downloaded 33 times
More Related Content
Methane production assessment by anaerobic codigestion from stem banana and cattle waste
1. SERGIO ENRIQUE ARANGO OSORNO, Chemical Eng . Candidate to Master Science of Eng. (Environmental). [email_address] JORGE MONTOYA Biologist MSc GUSTAVO PEÑUELA Chemical. PhD Research Teams: INTEGRA & GDCON Tecnological of Antioquia - University of Antioquia Medellín - Colombia 2010 METHANE PRODUCTION ASSESSMENT BY ANAEROBIC CODIGESTION FROM STEM BANANA AND CATTLE WASTE IN ANTIOQUIA, COLOMBIA 15 th International Scientific Congress. CNIC 2010. CUBA 1th July.
3. RAW MATERIAL TYPE SPECIES WEIGHT Kg manure/day L/kg.VS. %CH 4 Pigs 50 4,5 - 6 340 - 550 65 - 70 Cattle 400 25 -40 90 - 310 65 Horses 450 12 - 16 200 - 300 65 Sheep 45 2,5 90 - 310 63 Poultry 1, 5 0,06 310 - 620 60 Vegetables Wholesale Central 13000 6 - 12 60 Codigestion Wholesale C. & L ivestock C. 23000 212 - 268 60
4. Colombia generates 1 `231.200 ton/y of waste stem banana and 14'700 000 ton/y in the world [1] . CH 4 production is equal to 738 600 ton/year. [1] SOTO, M. Banano cultivo y comercialización. San José de Costa Rica: Editorial LIL, 1995. 648p. CH 4 ESTIMATION
5. STUDY AREA San Pedro de los Milagros Urabá “Banana” Region
6. ¿How much will be affected kinetic and methane production by temperature in cattle anaerobic and banana stem vegetable wastes codigestion ? OUR RESEARCH QUESTION
7. GENERAL OBJECTIVE To evaluate temperature effect in mesophilic and thermophilic conditions in methane production from cattle and banana stem vegetable waste co-digestion.
8. SPECIFIC OBJECTIVES To assess the influence of livestock/vegetable wastes in methane production during co-digestion. To determine kinetics of methane production at different temperatures. To determine the COD, total solids, fixed solids, volatile solids and humidity, in livestock and vegetables waste co-digestion treatment.
9. EXPERIMENTAL DESIGN VARIABLE TEMP . VARIABLE: SUBSTRATE RATIO X = vegetable m/ (vegetable m + animal m) (%) X1 = 0 X 2 =1/3 X3=2/3 X4 =100 (33.3) (66.6) T1 (25ºC) T1, X1 T1, X2 T1, X3 T1, X4 T2 (35ºC) T2, X1 T2, X2 T2, X3 T2, X4 T3 (45ºC) T3, X1 T3, X2 T3, X3 T3, X4 Total Treatms. 12 Total assays 36
11. METHODS TIME DURATION PROCEDURE LABORATORY ANALYSIS To take samples Livestock C. O.M Animal Wholesale Central O.M vegetable STEM BANANA Mix and get Xi: X1, X2, X3, X4 Analyze each sample X1, X2, X3 y X4 Do 3 repetition of each one to get Xij (12) Inicial Analysis (SST y SSV), COD, humIdity, pH, conduct. Upload biorxtors (12) up to one third Put stopper and valve, injection N2 Heat bath Mary a T cte Analysis of CH4 x chromatography Analysis fin. (SST y SSV), DQO, humidity, pH, conduct. Time = 40 days Analysis microbiological O.M. 40 day Time= 4 days
19. CONCLUSION By increasing the temperature it can be obtained energy in methane structure from waste cattle and banana stem co-digestion, which are abundant in banana plantations and cattle areas in Colombia and other tropical countries, achieving a great reduction of greenhouse gases emissions.
20. REFERENCES ENERGIAS RENOVABLES 2004. ENERGIA BIOMASA. Dirección Nacional de Promoción. Subsecretaría de Energía Eléctrica. Secretaría de Energía. República Argentina. 2006. Cartilla técnica biodigestores. 2003. Corantioquia. ZAPATA, Alvaro. 2003. Utilización del biogás para generación de electricidad. Fundación CIPAV. Colombia. Políticas energéticas en Cuba: pasado y propuestas para el futuro. Programa de desarrollo de las fuentes nacionales de energía. http://usuarios.lycos.es/biodieseltr/hobbies4.html Flotats, X.,Campos, E.. 1997. Aprovechamiento energéticos de residuos ganaderos. HESSAMI, Mir - Akbar . Anaerobic digestion of household organic waste to produce biogas. 1996. FAN, Yao-Ting . 2005. Efficiente conversion of wheat straw into biohydrogen gas by cow dung compost. Lay JJ, Li YY, Noike T. 1998. A mathematical model for methane production from landfill bioreactor. Journal of Environmental Engineering ASCE 1998;124:730–6. Lixiviados en los vertederos de residuos sólidos: su incidencia en la extracción de biogás. Tubkal Catalunya, S. L.. Lin CY, Lay CH. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy 2004;29:41–5.