The document contains 6 sections with math word problems and expressions to solve. It begins with evaluating arithmetic expressions and indicating the order of operations. Then it involves deducing values of expressions using given variables. Next it evaluates expressions using variables A, B and C. It continues with converting math expressions to algorithmic expressions. Then it evaluates logical expressions using variables and given values. Finally, it converts language statements to numeric expressions.
3. 2. Deducir el valor de las expresiones siguientes: Siendo: A = 5; B = 25; C = 10
8. X = A + B mod C = 0
X = (5 + 25) mod 10
X = 30 mod 10
X=0
9. X = (A + B) / C = 3
X = (5 + 25) / 10
X = 30 / 10
X=3
10. X = A + (B / C) = 7.5
X = 5 + (25 / 10)
X = 5 + 2.5
X = 7.5
11. b ^ 2 - 4 * a * c = -23 a = 2, b = 1, c = 3
= (1^2) – (4 * 2 * 3)
= 1 - 24
= -23
12. (X ^ 2 + Y ^ 2) > (30 / 2) = 12 > 15 X = 2, Y = 3, Z = 4
= ((2^2)+ (3^2)) > (30/2)
= (4+ 9) > 15
= 13 > 15
3
4. 3. Si el valor de A es 4, el valor de B es 5 y el valor de C es 1, evaluar las
siguientes expresiones:
13. B * A - B ^ 2 / 4 * C = -1.25
= (5 * 4 – (5^2)) / (4 * 1)
= 20 - (25 / 4)
= 20 – 6.25
= 13.75
14. (A * B) / 3 ^ 2 = 2.222222222
= (4 * 5) / (3^2)
= (4 * 5) / 9
= 20/ 9
= 2.222222222
15. ( ( ( B + C ) / 2 * A + 10 ) * 3 * B ) - 6 = 416
= (((5 + 4) / 2)* 4 + 10)) * (3 * 5)) -6
= (((9 / 2) * 4) + 10) * (3 * 5) - 6
= (((4.5 * 4)+ 10) * (15)) – 6
= ((18 + 10) * 15) - 6
= (28 * 15) – 6
= 420 - 6
= 416
4
5. 4. Realizar las conversiones de expresiones matemáticas a expresiones
algorÃtmicas. Indicando el orden de ejecución de cada una de ellas.
1. = (m + n) / (p – p)
2. = -b RC ((b^2)- (4 (a)) * c ) / (2 * a)
3. = (m + (n / p)) / (a – (r / s))
4. P= = P =(A + B + C) / 2
5. = X * (Y ^ 2)
6. + 1 = (m / n) + 1
7. = (m +(n / q)) / (q - (r / s))
8. (m + n) = (m + n) * (p / q)
9. = (a = RC (b^2) +(c^2))
(b2+ c2 = a2) = (a= ) = a = RC (b^2) +(c^2)
10. = (((3 (x)) – y) /z ) – (((2 (x) )* ( y^2) /( z - 1) + (x / y)
5
6. 5. Evaluar las expresiones lógicas aplicando la jerarquÃa de operadores.
1. ((A * B) < (B + C)) AND (A = C)= Falso A=3, B=4 y C=2
((3 * 4) < (4 + 2)) AND (3 = 2)
(12 < 6) AND (3 = 2)
2. ((A + B) > C) OR ((B / D > B))= verdadero A=2, B=5, C=3 y D=5
((2 + 5) > 3) OR ((5 / 5) > 5)
(7 > 3) OR (1 >5)
3. X = (A B) * C + (A / B)= X = 8 A = 4, B = 2, C = 3
X = (4 2) * 3) + (4 / 2)
X = (2 * 3) + (4 / 2)
X= 6+2
X= 8
6
7. X=1, Y=4; Z=10, PI=3.141592, E=2.718281
4. PI * X^2>Y OR 2* PI * X <=Z Verdadero
((3.141592)*1^2) >4) OR (((2*(3.141592))*1) <= 10
(3.141592 > 4) OR (6.283184 <= 10)
5. X>3 AND Y=4 OR X+Y<=Z Verdadero
(1 >3 AND 4 = 4) OR (1 + 4) <=10
(1>3 AND 4 = 4) OR (5<= 10)
6. X>3 AND (Y=4 OR X+Y<=Z) Falso
(1 >3) AND (4 = 4 OR (1 + 4) <=10)
(1 >3) AND (4 = 4 OR 5<= 10)
7. NOT Y/2=2*X AND NOT Y<(PI-E*Z) Falso
NOT ((4 / 2) = (2 * 1) AND NOT (4 < (3.141592 – (2.718281 * 10)))
NOT (2 = 2) AND NOT (4 < (3.141592 – (27.18281)))
NOT (2 = 2) AND NOT (4 < – 24.041218)
NOT (V) AND NOT (F)
F AND V
F
7