ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Kinematics
Motion in two and three dimensions
All previous motion has been
expressed in one dimension
Our position functions are ¡­
x
y
Now we can express motion in two
and three dimensions
x
y
z
To understand motion in 2/3 dimensions,
distance, velocity and acceleration need to
be divided into 3 directions: x, y and z
x y z
d dx dy dz
These can be grouped in two ways ¡­
x y z
d dx dy dz
v vx vy vz
a ax ay az
Each displacement, velocity and
acceleration vector can be divided into
their x, y and z components ¡­
d = (dx , dy , dz)
v = (vx , vy , vz)
a = (ax , ay , az)
x y z
d dx dy dz
v vx vy vz
a ax ay az
¡­or, a position function can be found
for each dimension: x, y and z.
x(t) = ?axt2
+ vxt + dx
y(t) = ?ayt2
+ vyt + dy
z(t) = ?azt2
+ vzt + dz
y
x
z
¡ñ
What is the position function for each dimension
¡ñ
Divide each vector, (d, v and a) into it¡¯s component for
A ball is thrown horizontally from a height of 10
metres and at a velocity of 15 metres per second
Vector components
(0, 0, 0)
(15, 0, 0)
y
x
z
d =
v =
a =
Position functions
dx(t) =
dy(t) =
15t
-
1
/2gt
2
+ 10
y
x
z
d(t) = 1
/2at2
+ vt + c
Our position function is:
Problem
The motion of a creature can be described in 3 dimensions
by the following equations for the position in the x, y and z
directions:
x(t) = 3t
2
+ 5
y(t) = -t
2
+ 3t ¨C 2
z(t) = 2t + 1
x(t) = 3t
2
+ 5
y(t) = -t
2
+ 3t ¨C 2
z(t) = 2t + 1
x(2) = 17
y(2) = 0
z(2) = 5
vx(t) = 6t
vy(t) = -2t + 3
vz(t) = 2
vx(2) = 12
vy(2) = -1
vz(2) = 2
ax(t) = 6
ay(t) = -2
az(t) = 0
ax(2) = 6
ay(2) = -2
az(2) = 0
IaI=
(62
+(-2)2
)
40 = 2 10
Alternatively ¡­
x(t) = 3t
2
+ 5
y(t) = -t
2
+ 3t ¨C 2
z(t) = 2t + 1
d(t) = (3,-1,0)t
2
+ (0,3,2)t + (5,-2,1)
v(t) = 2(3,-1,0)t + (0,3,2)
d(t) = (3,-1,0)t
2
+ (0,3,2)t + (5,-2,1)
v(t) = 2(3,-1,0)t + (0,3,2)
a(t) = (6,-2,0)
d(2) = (3,-1,0)2
2
+ (0,3,2)2 + (5,-2,1)
v(2) = 2(3,-1,0)2 + (0,3,2)
a(2) = (6,-2,0)
Projectile motion
A ball is kicked with a velocity ¡®v¡¯ at an angle of ¡®?¡¯.Write
a position function for each the x and z direction.
ax(t) =
vx(t) =
v.cos?
v.sin?
ay(t) =
vy(t) =
dy(t) =
0
v.cos?
0
-g
v.sin?
0
So our position functions
for x and y:
v.cos(??t
-
1
/2gt
2
+ v.sin(??t ¡­ or ¡­
x(t) =
y(t) =
d(t) =
Write a vector position function for
the situation below:
y
x
z
d(t) = 1
/2(0,-g,0)t2
+(v.cos(?),0,0)t + (0,h,0)
Problem
distance
Position function:
y(t) = -
1
/2gt
2
+ v.sin(??t
Distance travelled occurs when height (y)=0
0 = -
1
/2gt
2
+ v.sin(??t
The time (t) when height (y)=0:
t1(-
1
/2gt2 + v.sin(??) = 0 t1= 0
1
We can now find the distance travelled by ¡­
substituting ¡®t2¡¯ into the ¡®x¡¯ position function.
x(t) = v.cos(??t
x(t2) = v.cos(???(2v.sin(???
???????????????????????g
= v
2
.2cos(?)sin(??
Problem 2
What is the speed (m/sec) needed for a stunt
driver to launch from a 20 degree ramp to land
15 m away? What is his maximum height?
dy(t) = -0.5gt^2 + u.sin(20)t
0 = -0.5gt^2 + u.sin(20)t
t(u.sin(20) ¨C 0.5gt) = 0
u.sin(20) ¨C 0.5gt = 0
0.5gt = u.sin(20)
t = 2u.sin(20)/g
dx(t) = u.cos(20)t
15 = u.cos(20)t
u = 15 / (cos20.t)
= 15
cos20(2u.sin(20)/g)
u^2 = 15g

More Related Content

motion in 2 dimension.pptxxxxxxxxxxxxxxxxxxxxxxx

  • 1. Kinematics Motion in two and three dimensions
  • 2. All previous motion has been expressed in one dimension Our position functions are ¡­ x y
  • 3. Now we can express motion in two and three dimensions x y z
  • 4. To understand motion in 2/3 dimensions, distance, velocity and acceleration need to be divided into 3 directions: x, y and z x y z d dx dy dz These can be grouped in two ways ¡­
  • 5. x y z d dx dy dz v vx vy vz a ax ay az Each displacement, velocity and acceleration vector can be divided into their x, y and z components ¡­ d = (dx , dy , dz) v = (vx , vy , vz) a = (ax , ay , az)
  • 6. x y z d dx dy dz v vx vy vz a ax ay az ¡­or, a position function can be found for each dimension: x, y and z. x(t) = ?axt2 + vxt + dx y(t) = ?ayt2 + vyt + dy z(t) = ?azt2 + vzt + dz
  • 7. y x z ¡ñ What is the position function for each dimension ¡ñ Divide each vector, (d, v and a) into it¡¯s component for A ball is thrown horizontally from a height of 10 metres and at a velocity of 15 metres per second
  • 8. Vector components (0, 0, 0) (15, 0, 0) y x z d = v = a =
  • 9. Position functions dx(t) = dy(t) = 15t - 1 /2gt 2 + 10 y x z d(t) = 1 /2at2 + vt + c Our position function is:
  • 10. Problem The motion of a creature can be described in 3 dimensions by the following equations for the position in the x, y and z directions: x(t) = 3t 2 + 5 y(t) = -t 2 + 3t ¨C 2 z(t) = 2t + 1
  • 11. x(t) = 3t 2 + 5 y(t) = -t 2 + 3t ¨C 2 z(t) = 2t + 1 x(2) = 17 y(2) = 0 z(2) = 5 vx(t) = 6t vy(t) = -2t + 3 vz(t) = 2 vx(2) = 12 vy(2) = -1 vz(2) = 2 ax(t) = 6 ay(t) = -2 az(t) = 0 ax(2) = 6 ay(2) = -2 az(2) = 0 IaI= (62 +(-2)2 ) 40 = 2 10
  • 12. Alternatively ¡­ x(t) = 3t 2 + 5 y(t) = -t 2 + 3t ¨C 2 z(t) = 2t + 1 d(t) = (3,-1,0)t 2 + (0,3,2)t + (5,-2,1) v(t) = 2(3,-1,0)t + (0,3,2)
  • 13. d(t) = (3,-1,0)t 2 + (0,3,2)t + (5,-2,1) v(t) = 2(3,-1,0)t + (0,3,2) a(t) = (6,-2,0) d(2) = (3,-1,0)2 2 + (0,3,2)2 + (5,-2,1) v(2) = 2(3,-1,0)2 + (0,3,2) a(2) = (6,-2,0)
  • 14. Projectile motion A ball is kicked with a velocity ¡®v¡¯ at an angle of ¡®?¡¯.Write a position function for each the x and z direction.
  • 15. ax(t) = vx(t) = v.cos? v.sin? ay(t) = vy(t) = dy(t) = 0 v.cos? 0 -g v.sin? 0
  • 16. So our position functions for x and y: v.cos(??t - 1 /2gt 2 + v.sin(??t ¡­ or ¡­ x(t) = y(t) = d(t) =
  • 17. Write a vector position function for the situation below: y x z d(t) = 1 /2(0,-g,0)t2 +(v.cos(?),0,0)t + (0,h,0)
  • 19. Position function: y(t) = - 1 /2gt 2 + v.sin(??t Distance travelled occurs when height (y)=0 0 = - 1 /2gt 2 + v.sin(??t The time (t) when height (y)=0: t1(- 1 /2gt2 + v.sin(??) = 0 t1= 0 1
  • 20. We can now find the distance travelled by ¡­ substituting ¡®t2¡¯ into the ¡®x¡¯ position function. x(t) = v.cos(??t x(t2) = v.cos(???(2v.sin(??? ???????????????????????g = v 2 .2cos(?)sin(??
  • 21. Problem 2 What is the speed (m/sec) needed for a stunt driver to launch from a 20 degree ramp to land 15 m away? What is his maximum height?
  • 22. dy(t) = -0.5gt^2 + u.sin(20)t 0 = -0.5gt^2 + u.sin(20)t t(u.sin(20) ¨C 0.5gt) = 0 u.sin(20) ¨C 0.5gt = 0 0.5gt = u.sin(20) t = 2u.sin(20)/g dx(t) = u.cos(20)t 15 = u.cos(20)t u = 15 / (cos20.t) = 15 cos20(2u.sin(20)/g) u^2 = 15g