The Construction and Practice of Apache Pegasus in Offline and Online Scenari...acelyc1112009
?
A presentation in Apache Pegasus meetup in 2022 from Wei Wang.
Apache Pegasus is a horizontally scalable, strongly consistent and high-performance key-value store.
Know more about Pegasus https://pegasus.apache.org, https://github.com/apache/incubator-pegasus
此簡報為 Will 保哥 於 2015/6/25 (四) 接受 SQL PASS Taiwan 邀請演講的內容。
現場錄影: http://www.microsoftvirtualacademy.com/training-courses/sql-server-realase-management?mtag=MVP4015686
[ Will 保哥的部落格 - The Will Will Web ]
http://blog.miniasp.com
[ Will 保哥的技術交流中心 ] (Facebook 粉絲專頁)
https://www.facebook.com/will.fans
[ Will 保哥的噗浪 ]
http://www.plurk.com/willh/invite
[ Will 保哥的推特 ]
https://twitter.com/Will_Huang
[ Will 保哥的 G+ 頁面 ]
http://gplus.to/willh
Hadoop con 2015 hadoop enables enterprise data lakeJames Chen
?
Mobile Internet, Social Media 以及 Smart Device 的發展促成資訊的大爆炸,伴隨產生大量的非結構化及半結構化的資料,不但資料的格式多樣,產生的速度極快,對企業的資訊架構帶來了前所未有的挑戰,面對多樣的資料結構及多樣的分析工具,我們應該採用什麼樣的架構互相整合,才能有效的管理資料生命週期,提取資料價值,Hadoop 生態系統,無疑的在這個大架構裡,將扮演最基礎的資料平台的角色,實現企業的 Data Lake。
Docker in daeqaci provides the following benefits for testing:
1. Testing environments match production environments more closely by running tests inside Docker containers with the same base software environments.
2. Tests are isolated from each other and can be reproduced independently on different machines by defining the full testing environment through Docker Compose files.
3. Test initialization data is cached and reused through Docker images, speeding up test execution significantly compared to traditional testing.
This document discusses Docker and its use for the Douban App Engine (DAE). It covers:
- The history of adopting Docker for DAE applications from 2014 to 2016.
- How DAE uses Docker to build and deploy over 400 application images across different environments.
- Techniques used to optimize the Docker build process and reduce image sizes.
- Integrating Docker with the DAE monitoring, logging, and maintenance systems.
This document discusses using Python for Hadoop and data mining. It introduces Dumbo, which allows writing Hadoop programs in Python. K-means clustering in MapReduce is also covered. Dumbo provides a Pythonic API for MapReduce and allows extending Hadoop functionality. Examples demonstrate implementing K-means in Dumbo and optimizing it by computing partial centroids locally in mappers. The document also lists Python books and tools for data mining and scientific computing.