狠狠撸
Submit Search
Murpy's Machine Learing: 10. Directed Graphical Model
?
Download as PPTX, PDF
?
4 likes
?
1,625 views
J
Jungkyu Lee
Follow
1 of 36
Download now
Downloaded 48 times
More Related Content
Murpy's Machine Learing: 10. Directed Graphical Model
1.
ML study 4th
2.
10.1 Introduction ? ?
?? ?? ?? ? joint distribution p(x|θ)? ??? ????? ??? ? ???? ? Chain rule ? Conditional Independence(CI) ? Graphical Model ? ?? ??? ???? ?, ?? ??? ??? ????? ??? ? ???? ? maginalization ? ??? ?????? ??? ????? ??? ? ???? ? Factorized posterior
3.
10.1.1 Chain rule
4.
10.1.2 Conditional independence ??
???? ??? ???? ????
5.
10.1.3 Graphical models ?
graphical model (GM)? Cl ???? joint distribution? ???? ???. ? ???? node?? ?? ??? ????. ? edge? ??? Cl ??? ????.
6.
10.1.4 Graph terminology Descendent Ancestor Parent X Y1
Y2 Non-descendent
7.
10.1.5 Directed graphical
models ? directed graphical mode = DGM = DAG = Bayesian networks = belief networks = causal networks ? The key property of DAGs: topological ordering = ??? ?? ?? ??? =??? ??? ???? ??? ? ??? ??? ???? ? ??? ?? ordered Markov property? ??? ? ??. ? ??? ?? ????? ??? ???(??? ?? ???? ??? ??? ???.) ? Graphical model? ??? ??? ??? ?? ? ??? ?? ??, ?? ?? ??? ? ??? ?? ??, ???? ????? p(x|G) emphasize that this equation only holds if the CI assumptions encoded in DAG G are correct
8.
? ?? ??
??? ? ??? ???? ??? ?? ??? ??? d-separated ??? ??
9.
10.2 Examples
10.
10.2.2 Markov and
hidden Markov models
11.
10.2.2 Markov and
hidden Markov models
12.
Case study, Deep
learning(RBM) for Collaborative Filtering likelihood learning= MLE w.r.t W ?? ???? MCMC? gibbs sampling ??? ? ? h= 0 ?? 1 V = [0 0 1 0 0] //?? 3??
13.
? GM? ??
?? ??(joint probability distribution)? ???? ??? ??? ?? ? ?? ??? ???? ?, ??? ? ? ???? ??? ?? ? HMM? ?? ??, ??(speech signal)??? hidden state (word)? ???? ?? ??? ????. ?? ?? p(x1:V|θ)? ?? ??? ?? ??? ??? ??? ?? ?? ??(visible) ?? xv ???( hidden) ??, ? ? ?? ?? ?? ???? ?, ??? ?? posterior? ??? ??? ??: ? ??? ??? ?? ? ???? ???? ???? ??. ? query variables, xq: value we wish to know nuisance variables xn: ?? ? ?? ? nuisance ??? marginalize???? ?? ??? ?? ?? ? 10.3 Inference
15.
P(x1=w)p(x2=sal|x1=winter)p(x3=m|x2=sal)p(x4=th|x2=sal) = 0.25*0.9*0.33*0.6 =
0.4455
16.
10.4 Learning Structure learning
: DGM? ??? ?? = ?? ?? ????? ?? ??? ??, chapter 26 ????? ?????? ? ???? ?????. LDA
17.
10.4.1 Plate notation
19.
?? ??
20.
???? tck: t?? ???
c?? ????? k?? state c ?? ????? ???? ? t??? ??? k?? ?? θtck? hyperparamter multinomial(θtc) multinomial-dirichlet ??? ??? factorized? posterior? dirichlet ??? ??? posterior? ???? ?? 4?? ?? CPT ??? ???? ??? DGM?? ?? ???? ?
21.
?? ??? ? ?
theta? ???? ?? graphical model(=joint distribution? ??? ??)? learning ? joint distribution? ???? ?? ??? ?? CPT? ??? ??. ? ???? ????? ???? graphical model? learning? ?? ??(factorized posterior)
22.
10.4.3 learning with
missing and/or latent variables ? ???? missing ???? latent ??? ???, likelihood? ? ?? ????? ?? ? ?? convex??? ? ???(11.3?? ???) ? ? local optimal? MLE? MAP? ?? ??? ??. ? parameters? ???? ??? ? ?????. ?? ?? ??? ??? ???. ?
23.
10.5 Conditional independence
properties of DGMs CI ??? ??? ??? edge? ????(ci??? ???? ???? sparse???) ?? ???? ?? ?? p(??? sparse? ???)? ??, ???? ?? ?? ??? ?? ??? ?? ??? ci?? ? ??? ?? ??? G(p??? ? sparse? ???)? ???, ? ???? ?? ? ? p? ??? ? ??. I(p) ?? ???? ci??? ??? ? ???? ???, ?? p ??? ??? ??? ? G? p? imap??? ?? G? p? graphical model? ??? ? ??? ??? CI???? Chain rule???? ????? ????
24.
X1 X3 X2 X4 Minimal I-Map Example ?
If is a minimal I-Map ? Then, these are not I-Maps: X1 X3 X2 X4 X1 X3 X2 X4 ? CI? true?? p? ???? CI? ???
25.
10.5.1 d-separation and
the Bayes Ball algorithm (global Markov properties)
26.
The Bayes ball
algorithm(Shachter 1998) ? E? ???? ?, A? B??? d-???? ???? ??? ?? ? A? ? ??? ?? ??, ?? ??? ??? ???, ?? ?? B? ?? ??? ???? ??
27.
The Bayes ball
algorithm(Shachter 1998)
28.
The Bayes ball
algorithm(Shachter 1998) ??? ?? ??
32.
10.5.2 Other Markov
properties of DGMs ?? ?? ??t ???? ?? From the d-separation criterion, one can conclude that
33.
ordered Markov property, topological
ordering?? ??t?? ?? ??? ?? ?? ??
34.
?? ???? ? ?????
??(??)? ??(?? ??)? ???? ??? ??? ??? ? global Markov property G ? the ordered Markov property O ? directed local Markov property L ? d-separated ???? ??? G? ???? ?? G <->L <-> O ??(Koller and Friedman 2009) ? G? true p? i-map?? ?? p? ??? G? ?? ??? ?? factorize ? ? ?? (F??) ? F = O ((Koller and Friedman 2009) for the proof), ? G = L = O = F ? d-separated -> G -> O -> L -> F ? ??? ?, ??? ??? ???? ??? CI ??? ? ???? ??? ? ? ? ??? G? ??? ????? ?? p? ci??? ??? ??? ??? compact?? factorize? ? ??? ? ??? ???? ?(??? ?? ??) ?????? ? ? ?? theorem
35.
10.5.3 Markov blanket
and full conditionals d-??? ??? ? ? ???? ??? ???? d-?? ???? ????
36.
? full conditional
posterior? ??? ???? ?? ??
Download