際際滷

際際滷Share a Scribd company logo
Artificial Intelligence Basics
in Healthcare Industry
Fateme Pourghasem
Sahand Samiei
Fateme Pourghasem
Founder at BaMaMouz
Health-IT Student at Tehran University of Medical Sciences
Research Assistant at Company Non-Communicable Diseases Research Center (NCDRC)
Entrepreneurship Mentor at National Scientific Olympiad for Medical Sciences
Nabz AI Academy - Watson Course - Session 1
This person does not exist!
悽悋悋惆擯 悋  悋 擧惆 悽悋悋惆擯 悋  悋 擧惆
愀悋惘
悋惘悋忰惆 0 惶悋忰 惶惆 1
慍悋惆 愀悋惡 忰悋惆 0 惺惡惆 悋愀 0
悋惆惘 惘悋 1 悋惆悋忰惆 悋愀 1
惘 悛惘 0 惶惘 愆惆惘悽 1
悴惺惘拆惘 惘 1 悋惆 愀 悋惘惘惷悋 0
悋悋 惺悋愀 0 惘愆 悽愆 悋惆悋悋 1
愕悋悋惘惺悋惡惆 惆 忰惆 1 
悋忰惆慍悋惆 0
擧惆悽惆悋 擧悋 0 擧悽悋 悋悧慍 1
惘惺 擯悋慍 1 悋愕 愆悋擯悋 0
愕 忰惆 愕惆 0 拆惘悋愕 悋愀 
惘 悋愕惆 惺 1 愕惺 愕惆 
惴悋惘惠 悋愀 1
惡悋慍
!
悴悋惡
惡悋慍
!
悽悋悋惆擯 悋  悋 擧惆 悽悋悋惆擯 悋  悋 擧惆
愀悋惘
悋惘悋忰惆 0 惶悋忰 惶惆 1
慍悋惆 愀悋惡 忰悋惆 0 惺惡惆 悋愀 0
悋惆惘 惘悋 1 悋惆悋忰惆 悋愀 1
惘 悛惘 0 惶惘 愆惆惘悽 1
悴惺惘拆惘 惘 1 悋惆 愀 悋惘惘惷悋 0
悋悋 惺悋愀 0 惘愆 悽愆 悋惆悋悋 1
愕悋悋惘惺悋惡惆 惆 忰惆 1 
悋忰惆慍悋惆 0
擧惆悽惆悋 擧悋 0 擧悽悋 悋悧慍 1
惘惺 擯悋慍 1 悋愕 愆悋擯悋 0
愕 忰惆 愕惆 0 拆惘悋愕 悋愀 0
惘 悋愕惆 惺 1 愕惺 愕惆 1
惴悋惘惠 悋愀 1
惠惺惘
惶惺 愆
惶惺 愆 惠惺惘

惠惺惘
:
惺悋 惡 惘悋 惶惺 愆
悋愆悋悽
擧 愆悽惶 擧悋拆惠惘 惺 悋慍
擧 惆
惡悋
悽惆擧悋惘愕悋慍
愆惆悋 惘惠悋惘悋
惆悋惘惆 愕惘擧悋惘
.
悋愕惠 悋 悋悴惘悋 愕悽惠 惡悽愆
:
惘悋 愆 悽惆 擧 悛悴悋 悋慍
惠悋
惆 惠惺惘 悋擧悋 擧 惠惺惘 惆惘愕惠 惡

惆悋惘惆 悴惆  惶惺 愆
.

擧惘惆 惠愆惘忰 惡惘悋 惶惺 愆 悋惶愀悋忰 擧 愀惘 惡
悋愕愕惠
擧悋惘 惡
惘
惆
擧
惆
悋悛
悋慍 悋愕惠悋惆
悋悋愆
 惠惆 惡惘悋
愕悋慍愆惡
惘惠悋惘悋  悋愕悋 愆
悛 惡悋 惘惠惡愀
悋愕惠
.

悋慍 悋愕惠悋惆 惡悋 悋愕惠 擧 擯悋 惆 悋
悋悋擯惘惠
愕悋惆
惠惺 拆愆 悋慍 悋擯悋 
愆惆 
惡 悋慍  擯悋  愆惆 忰
悋悋擯惘惠
悋惺悋惆
拆惆
惆悋惘惆
.
Nabz AI Academy - Watson Course - Session 1
AI in
healthcare
悋惠擧
惘惆
悋愕惠悋惆
愆
愕悋惠 惆惘 惶惺
 Machine Learning
 Machine Vision
 Natural Language Processing (NLP)
 Robotics
Disease Prediction :
 Traditionally approaches of doctors.
 Use of AI technologies in this area.
 Benefits.
X-RAY of a Human Hand
Drug Manufacturing :
Nabz AI Academy - Watson Course - Session 1
Surgery:
 da Vinci by Intuitive Surgical.
 Mako by Stryker.
 NAVIO by Smith & Nephew.
 Monarch by Auris Health.
惘惡悋惠
愕悋 悴惘悋忰
!

愕悋悋
悴惘悋忰
惘惡悋惠擧
愕悋
惡悽愆 惆 愆悋
悋惶
擧愕
悴惘悋忰
 惆惘 惘悋 悋慍
悋惘惡悋惠
惡惘 愕惠惘 悴惘悋忰
惡悋
惡悋惘
悋愕惠
.
惘惡悋惠
悴惘悋忰
愕悋
惆悋惘悋
霸朸
悴慍 惶
惠惘 惡
悋擧惠惘擧
悋愕惠 悋惆惘 擧 悋愕惠
惠惘惴惘
悋惺
悴惘悋忰
惆惆 悋悴悋 惘悋
.
擧愕
悴惘悋忰
愆悋
悋惠惘
惆 
惘惡悋惠
 惘悋惡惘
拆惆悋悋
惆悋惠
慍惘拆悋
悴 擧 悋愕惠
惘悋忰
擧愕 拆愆惠 惆惘 愆愕惠 惡悋
惠惶悋惘
悋慍 愆惆 悋惘愕悋
悋忰
 愆悋惆 惘悋 惺
悋惡慍悋惘悋

悴惘悋忰

惆惘惡
惠惶惘惡惘惆悋惘
惆惘 惘悋 悋慍 惶惘惠 惡 惘悋
惆悋惠
擧惆
.
悋慍
愕
惆
擯惘
愕
惘惡悋惠
拆惘
惆 愆悋
惘惡悋惠
 悋惡慍悋惘 忰悋
擧
惘惡悋惠
惠惶惘惡惘惆悋惘
惆惘 擧
惡悋
惡
悋惘
愆惆悋惆 愕惠惘
悋悴惘悋
惆悋惘惆 惺惆 惡惘 惘悋 悴惘悋忰 惆愕惠惘悋惠
.
慍悋悋 悋慍
惘惡悋惠
愕悋 悴惘悋忰

擧
悋慍
惠惘
擯悋
惘惡悋惠
悴惘悋忰
愕悋
悋慍 悋愕惠悋惆 
悋惡慍悋惘悋
惠惆悋
悴惘悋忰
悋拆悋惘愕擧拆
惡
悴悋
惡
擧悋惘擯惘
悋惡慍悋惘悋
擧悋愆 擧 悋愕惠 悽悋惶
愆惆惆
慍悋
惶惘
惘惡悋惠
惆惘 惘悋
愀
惺
悴惘悋忰
惆悋惘惆 惆惡悋 惡
.
惡
愀惘
擧
慍
惠愕愀
惶惘
惘惡悋惠
愕悋
悋慍 悋愕惠悋惆 惶惘惠 惆惘
悋惡慍悋惘悋
惶惘 惆悋悧
惡愕悋惘
悋慍

惆惘
悋愕
惡悋
慍
惠愕愀
惘惡悋惠
惆悋
(
忰惆惆
朶朧朧朧
惆悋惘
)
悋愕惠 擧惠惘 惘悋惠惡 惡
.
擧
愆惘擧惠
愆悋惘
惠擧
惡
悋
Accenture
惠悽
慍
擧
悋惺
悴惘悋忰
惶惘惠
擯惘惠
惡悋
AI
惠
惡悋惺惓
悴惶惘
40
悋惘惆
惆悋惘
惆惘
惶惺惠
拆慍愆擧
悛惘擧悋
惠悋
愕悋
2026
惡愆惆
.
惶惺 愆 惠悋惘悽
Nabz AI Academy - Watson Course - Session 1
愆
愆
惶惺
惘
惘慍
惆惘
慍惆擯
悋
惡愆惠惘
愆惆
.
悛悽惘
惠惘惆
惆惘
悋
慍
悋惠惘悋愆
愆
惶惺

擧悋惘惡惘惆悋
悽惠
悋悛
惆惘
悋擯愆
愆惆
悋愕惠
.
悋悋
愆惘惺
惠愕惺
悋
惠擧
惆惘
悋惺
惡
悽
惠惘惡
擯惘惆惆惡惘

惺
慍悋
惆惘
惆
杁朧
悋惆
擧
束
惆悋愆擯悋
惆悋惘惠惓
損
Dartmouth College
惆惘
悋悋悋惠
惠忰惆
擧
拆惘
惠忰悋惠
惠悋惡愕惠悋
惘悋
惡
愆
惶惺
悋悽惠惶悋惶
惆悋惆
.
悋惘愆
忰惠 惘悋 惶惺 愆
惠悋
惺 惆惘
惆惘  惠悋惘悽 悋慍 惡愆惠惘
悋惺悋惠
:
束
悛
悧
損
Allen Newell

束
惘惡惘惠
悋
.
愕
損
Herbert A. Simon
束
悛
惠惘擯
損
Alan Turing
悴悴愕惠
擧惘惆
.
悛慍
愆惘
惠惘擯
惆惘
愕悋
霸杞杁朧
惠愕愀
悋
惆惘
悋悋
愀惘忰
愆惆
.
悋
悋
擧
悋慍
悋

悋愕悋惆
悋愕惠
擧
惆惘
悛
惡
悴惆
悛惆
悋悋愆
愆惆
惡拆愆
愆惆
悋愕惠
.
悴悋 惠愕愀 惶惺 愆 愃惠 悛惆 悴惆 惡
擧悋惘惠擧
愕悋 惆惘
霸杞杁杁
惡悋
悋
忰悋

愆
惶惺
惠悋
拆愆
悋慍
惺惘
愆惆
愕拆惘擧悋拆惠惘
束
惆拆
惡
損
Deep
Blue
惠愕愀
擧拆悋
IBM
慍
惠悴
悴悋悋
惘悋
惡
悽惆
悴惡
擧惘惆
惡惆
.
愕悋
霸杞杞朷
悋
愕拆惘擧悋拆惠惘
悋
悋愆
惡惆
擧
惠悋愕惠
惘悋
愆愀惘悴
悴悋
束
擯惘
擧悋愕拆悋惘
損
Garry Kasparov
惘悋
惆惘
悋愕悋惡
擧
惆惘
愕悋
霸杞杞朸
悋惆
惡惘擯慍悋惘
愆惆
愆擧愕惠
惆惆
!!!
悋惠愕
-
朮朧霸霸
AlphaGo
愕悋
朮朧霸朷
Self-driving cars
悽惠 悋悋惺
惶惺 愆
悋愆悋悽
擯悋擯
惆惘 惶惺 愆 悋慍
悋惆悋愆
悋惘悋悋
悋愕惠悋惆 惘惆
惘悋惘
擯惘惆
悋 惡惘悽 
悋愆悋悽
悋慍 惺惡悋惘惠惆
:

悋愆 悋惆擯惘
Machine Learning

惶惺 惺惶惡 愆惡擧
Neural Networks

悋愆 惡悋
Machine Vision

悋愕悋悋
悽惡惘
Expert System

愀惡惺 慍惡悋 拆惘惆悋慍愆
NLP

悋擯惘惠
惠擧
Genetic Algorithm

惡悋 惘惠惡愀 悋
惘惡悋惠擧
Robotic
悋愆惡擧
惺惶惡
忰惆悋 惡悋 悋愀悋惺悋惠 惆惘悋惠 悋慍 拆愕 惘悛惆 悋
惆
悋
惆擯惘
(
惆惘
悋愕愕惠
惡慍惘擯
惡愆 惠悋
悋慍
惡愕惠
悋
)
拆惆悋 悋惆悋
擧惆
惶惘惠 惡 擧
愕愕
惘悋惠惡
 惆悋惘惆 惘悋惘  惘
拆惆悋 悋慍 悋愕惠悋惆 惡悋 惘悋 悋愀悋惺悋惠
惡惆惆愕惠
悋惘愕悋 
擧惆
.
惆惘
惠惘拆悋
惡悽
愕愕 愆
惘悋惠惡
悋
惠惺惆悋惆 惺 愀惘 惡 擧 惆悋惘惆 惘悋惘 悽惘悴
悋惘
惠悋 悋慍 悛 惶惺
悋悋
悋愕惠 擧惠惘 惆擯惘
.
悋 悋
悋惆悋惆
惘悋 愆惆 忰悋愕惡
惡
惘惠
惠惡惆
擧惆
擧
惡惘悋 
惡悋愆惆 悽悋惆 悋惡 悋愆
.
惓悋
:
悽悋 惠
Nabz AI Academy - Watson Course - Session 1
Supervised
Unsupervised
Reinforcement
Email spam? (0/1) spam filtering
Audio text transcript speech recognition
English Persian machine translation
Image, raider info position of other cars self-driving car
Image of phone defect? (0/1) visual inspection
Input (A) output (B) Application
Nabz AI Academy - Watson Course - Session 1
Classification
惺 惆
supervised
:
惺 悋惆擯惘
(
Deep Learning
)
悋慍惘擯
悋愆 悋惆擯惘 悋慍
悋 悋 惺惶惡 惶惺 愆 悋慍 惘惆 悋 惆惘
悋愆惡擧
悋愕惠悋惆 惺惶惡

愆惆
.
悋擧惓惘
惡惘 惶惺 愆 悋惘慍 擧悋惘惡惘惆悋
拆悋
愕惠 惺 悋惆擯惘
惆
.
悋愕惠悋惆
悋慍
悋惡悋惠惠
惆惘
惡悽愆
悽惆悋惠
愆惠惘悋
惘慍
惡
惘慍
惡愆惠惘
愆惆
.
悋

惆愕惠悋惘悋
惡惠
惡惘
惠
擧悋惘
悽惆
惘悋
惡悋
悋愕惠悋惆
悋慍
惠愆悽惶
擧悋惠
擧
惆
惆惘
惆惘悽悋愕惠
愆惠惘

愆悋
惆悋惆
悋擧愆
惠悋愕惡
惡悋
悛
悋悴悋
惆惆
.
惡悋
惠悴
惡
擧悋惘惡惘惆悋
悽惠
悋
惺
惆愕惠悋惘悋
惠悋惆
惠惘愕悋惆
悋
惠惘拆惆
惡悋愆
惆
.

惠悴慍

惠忰
惴惘悋惠
惺悋
惡惘
惡拆愆
惠悋悴
悋惠悽悋惡悋惠
惆惘
惺悋
愕悋愕
惠

惆惘
惡悋慍悋惘悋惡

惡愕悋惘
悋忰慍
惆擯惘

悋愕惠悋惆
愆惆
.
束
悋愕惠悽惘悋悴
惴惘悋惠
損
(
Opinion Mining
)
擧

惡悋
悋
束
惠悴慍

惠忰
悋忰愕悋愕悋惠
損
(
Sentiment
Analysis
)

悋慍
悛
悋惆
愆惆

惡惘悋
悴悴愕惠
擧惘惆
悋惠惘惠
惆惘
惘惆
惺悋惆

惺惡悋惘悋惠
悋忰愕悋愕
惡
擧悋惘
惘惆
.
惡悋
悋
悋惘愆
惠悋
悋惴惘愕悴
惘悋
惡
惶惘
惠
悋愆悋愕
惡惘擯慍悋惘
擧惘惆
.
拆惘惆悋慍愆
擧悋惠
悋
惡惘惘愕
擧惘惆
擧
惠
悋慍
惴惘
惆愕惠惘
慍惡悋

悋愆惠惡悋悋惠
悋
悋
擧
悋慍
擧悋惘惡惘惆悋
擧悋愕擧
愆
惶惺
悋惆
悋愕惠
擧
惡惘悋
惆惠
慍悋
慍悋惆
悋慍
悛
悋愕惠悋惆
愆惆
.
惆惘
悋
惘愆
慍惡悋
惡
惺悋
愆惡擧
悋拆惆
悋慍
悋

悋惆愕惠惘悋惺
惠惺惘
愆惆
擧
愀惺悋惠
惠
惘悋
惆惘
擧
悴
惠悴慍

惠忰
擧惆

惆惘
惡惘悽
愆惘悋愀
惠悋惆
悋愆惠惡悋悋惠
惘悋
惠愆悽惶
惆惆

惠惶忰
忰
擧惆
.
悋慍

悋悋惡惠

惆惘
惠惡惆
愆惠悋惘
惡
擯惠悋惘
惆惘
惆愕惠悋惘悋
惶惠

悋惆
愕惘
悋擧愕悋

擯擯
悋愕愕惠惠

悋愕惠悋惆
愆惆
.
悋悋愆
愕悋惠 惆惘 惶惺 愆
 Training Doctors/Patients
 Adoption
 Regulations
 Maintenance
 Security
 Data!
5 minutes break
Sahand Samiei
Medical Advisor at Nabz Group, AI Team
Medical Extern at Tehran University of Medical Sciences
Innovation Administrator at TUMS Exceptional Talents Development Center
Where are we?!
Job Positions  Domain Expert or Interdisciplinary Programmer
Common Literature & Coordination
Problem-Solution Fit Assessment
Generalism
A.I. top benefits in health industry
Systematic collection of big data & Information accessibility
Careful decisions with high accuracy
Streamlining processes with high speed
Scalability of health services
Reduce costs
Ethical concerns
Bias
Data collection Automation
an ML example for diagnosis
Mass
Normal
Mass ?!
an ML example for diagnosis

Image Mass Probability
0.48
0.51

Desired Label: 1 (Mass)
Desired Label: 0 (Normal)
Error (Loss) = 0.32
Error (Loss) = 0.31

Image Mass Probability
0.60
0.30

Desired Label: 1 (Mass)
Desired Label: 0 (Normal)
Error (Loss) = 0.22
Error (Loss) = 0.15
Class Imbalance Challenge
Mass Normal
Normal
Normal
Binary Cross Entropy Loss Function
Algorithm
Algorithm
0.2
Label 1
0.7
Label 0
Impact of Class Imbalance on Loss Calculation
Weighted Loss
Loss
Prediction
Probabilities
Examples
2/8 x 0.3 = 0.075
0.3
0.5
P1 Normal
2/8 x 0.3 = 0.075
0.3
0.5
P2 Normal
2/8 x 0.3 = 0.075
0.3
0.5
P3 Normal
6/8 x 0.3 = 0.225
0.3
0.5
P4 Mass
2/8 x 0.3 = 0.075
0.3
0.5
P5 Normal
2/8 x 0.3 = 0.075
0.3
0.5
P6 Normal
6/8 x 0.3 = 0.225
0.3
0.5
P7 Mass
2/8 x 0.3 = 0.075
0.3
0.5
P8 Normal
Resampling to Achieve Balanced Classes
Examples
P1 Normal
P2 Normal
P3 Normal
P4 Mass
P5 Normal
P6 Normal
P7 Mass
P8 Normal
Loss
Prediction
Probabilities
Re-Sampled
0.3
0.5
P3 Normal
0.3
0.5
P6 Normal
0.3
0.5
P1 Normal
0.3
0.5
P8 Normal
0.3
0.5
P7 Mass
0.3
0.5
P4 Mass
0.3
0.5
P7 Mass
0.3
0.5
P4 Mass
Multi-Task
Mass ?!
Pneumonia ?!
Edema ?!

Algorithm
Binary Task
Algorithm
Binary Task
Algorithm
Binary Task
Algorithm
Binary Task
Algorithm
Multi Task
Multi-Task
Weighted Loss
Prediction
Probabilities
Examples
0.52 + 1.00 + 0.70
0.3, 0.1, 0.8
P1 0, 1, 0
0.05 + 0.05 + 0.10
0.1, 0.1, 0.8
P2 0, 0, 1
0.10 + 0.70 + 0.15
0.2, 0.2, 0.7
P3 0, 1, 1
0.22 + 0.52 + 0.10
0.6, 0.3, 0.8
P4 1, 0, 1
0.15 + 0.15 + 0.05
0.7, 0.7, 0.9
P5 1, 1, 1
0.10 + 0.05 + 0.10
0.8, 0.1, 0.2
P6 1, 0, 0
0.52 + 0.05 + 0.10
0.3, 0.9, 0.8
P7 0, 1, 1
0.05 + 0.05 + 0.10
0.1, 0.1, 0.2
P8 0, 0, 0
Dataset Size
~ 10K Samples
~ 100K Samples
...
Solutions
1. Pretraining + Fine Tuning (Transfer Learning)
2. Data Augmentation
CNN Penguin / Cat / Dog
CNN Mass / Pneumonia / Edema
Key Challenges
Multi Label Loss
Weighted Loss
/ Resampling
Transfer Learning
/ Data Augmentation
Multi-Task
Class Imbalance Dataset Size
Model Testing
Dataset
Training Set Validation Set Test Set
Development
of models
Tuning and selection
of models
Reporting
of results
Cross validation
Patient Overlap
Dataset
Split by image
Training Set Validation Set Test Set

Mass
P. ID
Image
...
1
20
CXR1.JPg
...
0
17
CXR4.JPG
...
0
32
CXR7.JPG
...
...
...
...

Mass
P. ID
Image
...
1
20
CXR2.JPg
...
0
11
CXR5.JPG
...
0
32
CXR9.JPG
...
...
...
...

Mass
P. ID
Image
...
1
20
CXR0.JPg
...
0
38
CXR3.JPG
...
0
32
CXR8.JPG
...
...
...
...
Patient Overlap
Dataset
Split by patient
Training Set Validation Set Test Set

Mass
P. ID
Image
...
1
20
CXR1.JPg
...
1
20
CXR2.JPG
...
1
20
CXR0.JPG
...
...
...
...

Mass
P. ID
Image
...
0
32
CXR7.JPg
...
0
32
CXR8.JPG
...
0
32
CXR9.JPG
...
...
...
...

Mass
P. ID
Image
...
0
17
CXR4.JPg
...
0
38
CXR3.JPG
...
0
11
CXR5.JPG
...
...
...
...
Set Sampling
10% of data
----------------
120 CT Scans
400-500 X-Rays
130 Whole 際際滷s

X% of minority class !
Ground Truth (Reference Standard)
Consensus voting
1) +
Yes Yes
No
Mass ??
=
Yes
2) +
More definitive test
Key Challenges
Minority class
sampling
Split by patient Consensus voting
/ More definitive test
Set Sampling
Patient Overlap Ground Truth
Accuracy =
Examples correctly classified
Total number of examples
Accuracy = P(correct)
Accuracy = P(correct  disease) + P(correct  normal)
Using P(AB) = P(A|B) P(B) :
Accuracy = P(correct|disease) P(disease) + P(correct|normal) P(normal)
Accuracy = P( + |disease) P(disease) + P( - |normal) P(normal)
Evaluation Metrics
Model 2
Model 1
Ground Truth
-
-
Normal
+
-
Normal
-
-
Normal
-
-
Normal
-
-
Normal
+
-
Disease
-
-
Normal
+
-
Disease
+
-
Normal
-
-
Normal
Sensitivity
(True positive rate)
Specificity
(True negative rate)
Evaluation Metrics
TP FP
TN
FN
-
+
Disease Normal
Accuracy = P(correct)
Accuracy = Sensitivity x P(disease) + Specificity x P(normal)
Prevalence
Accuracy = Sensitivity x Prevalence + Specificity x (1  Prevalence)
1. Sensitivity = TP / (TP + FN)
2. Specificity = TN / (FP + TN)
3. PPV = TP / (TP + FP)
4. NPV = TN / (TN + FN)
ROC curve & Threshold
Model Probability > t ?
+
-
Output Probability
(Score)
X-Ray
0.30
1
0.42
2
0.78
3


0.98
15 0 Score 1
Negative t Positive
Resources for further study
Resources for further study
 The greatest enemy of knowledge is not ignorance,
it is the illusion of knowledge! 
- Stephen
Hawking
Q&A
@NabzGroup @shnd_s
Nabzgroup.com
samieisahand@gmail.com
@sahandsamiei
info@nabzgroup.com
@Fateme_Pourghasem
FatemePourghasem7@gmail.com
@FatemePourghasem

More Related Content

Nabz AI Academy - Watson Course - Session 1