This document discusses a field-effect transistor using strontium titanate (SrTiO3) as the channel material. The transistor was fabricated using a bilayer gate insulator of hafnium oxide and parylene, which resulted in excellent device characteristics including a subthreshold swing as low as 60 mV/decade. Hall effect measurements and capacitance-voltage measurements were used to determine the carrier density in the SrTiO3 channel, which showed evidence of a metal-insulator transition occurring at room temperature upon increasing gate voltage. This high-performance gated SrTiO3 device could enable further exploration of nonequilibrium phenomena in transition metal oxides.
1 of 40
More Related Content
Negative charge compressibility at the channel of SrTiO3 field-effect transistor
1. 1
Isao H. Inoue
Negative charge compressibility
at the channel of
SrTiO3 field-effect transistor
National Institute of Advanced Industrial Science & Technology (AIST)
(Tsukuba, Japan)
2. 2
N. Kumar et al., Scientific Reports 6, 25789 (2016)
3. Plan & Review.
Double-layer gate
insulator. Oxygen
isotope exchange.
FET device
fabrication.
Characterisation
down to 4K.
Nonequilibrium
Mott transition.
SX growth of SrTiO3,
SrTi18O3,(Sr,La)TiO3
etc., and
characterisation.
Marcelo J. Rozenberg鐚U. Paris-Sud
Masaki Oshikawa鐚ISSP, U. Tokyo
Theory
Strong E field
effect with
topology.
Crystal
Magneto-transport
measurement below
100mK.
Pablo Stoliar鐚CIC nanoGUNE
Neuromorphic
SrTiO3-FET.
Neuromorphic device
fabrication.
Computer simulation of
filament formation of
MottFET
Amos Sharoni鐚Bar-Ilan Univ.
SX growth of
vanadates for
neuromorphic
devices.
Device
Ultra Low T
Takashi Oka鐚MPI, Dresden
Isao Inoue鐚ESPRIT, AIST
Alejandro Schulman鐚ESPRIT, AIST
Naoki Shirakawa鐚FLEC, AIST
Yasuhide Tomioka鐚ESPRIT, AIST
Shutaro Asanuma鐚NRI&TIA, AIST
Thin film growth of
perovskite TMO for
Tunnelling RRAM.
Thin Film
Thin film growth of VO2
for Mott FET.
Hiroyuki Yamada鐚ESPRIT, AIST
Keisuke Shibuya鐚ESPRIT, AIST
Thin film growth of
perovskite Nickelates.
Device fab in TIA?
Present Collaborators
6. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
6https://www.facebook.com/isao.phys
Metal-InsulatorTransitioninSrTiO3
Our preliminary data:
MIT occurs at
the quantum resistance of h/e2.c.f. 3.51018cm-3 for Si
3.51017cm-3 for Ge
3.3 3.8 4.3 4.8 5.3
103
105
107
109
1011
1013
Vg = 1.8 V
Vg = 2 V
Vg = 2.7 V
Vg = 3 V
Vg = 3.3 V
Vg = 4.5 V
R(/)
1000/T (K-1
)
h/e2
7. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
7https://www.facebook.com/isao.phys
M. Janousch et al.,Adv. Mat. 19, 2232 (2007)
0.2 mol% Cr-doped
SrTiO3
By applying 0.1MV/cm
for about 30 min
Pt
Pt
Vo are created, distributed in
the channel, and form a
metallic path.
VO creation by electric-field
8. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
HfO2/Parylene bilayer
Hybrid gate insulator
HfO2 (竜 = 21.5)
+
Parylene-C (竜=2.7)
Isao Inoue and Hisashi Shima,
Japan Patent Number: 5522688, Date of Patent: 18th April, 2014
8https://www.facebook.com/isao.phys
9. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 9https://www.facebook.com/isao.phys
6nmParylene
20nmHfO2
G
S D
SrTiO3 channel
4袖m
S
D
V1 V2 V3
V4 V5 V6
G
4袖m
G
S D
VD =
VD =
VD =
W
L
STEM+EDX
SEM
SEM
I. Inoue and H. Shima, Japan Patent No.5522688 (2014)
I. Inoue, Japan Patent Application No.2016-013743 (2016)
N. Kumar,A. Kito, I. H. Inoue, Sci. Rep. 6, 25789 (2016)
TEM
Parylene/HfO2/SrTiO3 FET
10. Drain current ID vs. gate voltage VG
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
10https://www.facebook.com/isao.phys
log10(ID)
VG
Ideal FET
Vth
threshold voltage
sub-threshold region
accumulation region
G
S D
VG
ID
11. Much better than any SrTiO3-FET in literature
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 11https://www.facebook.com/isao.phys
10
-5
10
-3
10
-1
10
1
袖FE(cm
2
/Vs)
630
VG (V)
VD = 1V
VD = 0.1V
1050
n (10
13
cm
-2
)
200
100
0
(袖S)
VD = 1V
袖=10.9cm2/Vs
Accumulation Region
- sheet conductivity
of the channel
- sheet carrier density
of the channel
12. Drain current ID vs. gate voltage VG
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
12https://www.facebook.com/isao.phys
log10(ID)
VG
Ideal FET
One order
60mV
theoreticalminimum
Vth
threshold voltage
sub-threshold region
accumulation region
G
S D
VG
ID
13. Much better than any SrTiO3-FET in literature
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 13https://www.facebook.com/isao.phys
10
-5
10
-3
10
-1
10
1
袖FE(cm
2
/Vs)
630
VG (V)
VD = 1V
VD = 0.1V
1050
n (10
13
cm
-2
)
200
100
0
(袖S)
VD = 1V
袖=10.9cm2/Vs
Accumulation Region
- sheet conductivity
of the channel
10
-13
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
ID(A)
3210
VG (V)
S = 171 mV/dec
VD = 1 V
10
-14
10
-13
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
ID(A)
3210
VG (V)
VD = 0.5 V
0.1 V
0.02 V
Sub-threshold Region
- sheet carrier density
of the channel
S=170mV/dec is extremely small !
(~100mV/dec even for Si FET).
15. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
15https://www.facebook.com/isao.phys
5
Subthreshold swing
GateMetal4 袖m
1.2 mV
10
-13
10
-12
10
-11
10
-10
10
-9
10
-8
210
9 袖m
0.8 mV
10
-13
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
2 袖m
1.1 mV
3210
20 袖m
0.6 mV
VG (V)
ID(A)
ISD(A)
VG (V)
L = 2袖m L = 4袖m
L = 9袖m L = 20袖m
S = 189 mV/dec S = 172 mV/dec
S = 200 mV/decS = 200 mV/dec
1
transport
factor
body factor
Subthreshold swing of an insulator (and semiconductor)
only the thermally excited
carriers can contribute the
transport.
definition
is the surface potential
C
because = (1/ +1/ )-1n VGCSTO
CSTO
] = / = (1+ / )-1n CSTO
C VG
This does not depend whether
SrTiO3 is metallic, semiconducting,
or insulating.
Small S means
very clean channel !!
What is the sub-threshold swing?
祉祉subthreshold swing
60mV/decade
=170mV/dec !!
23. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
23https://www.facebook.com/isao.phys
10
11
10
12
10
13
10
14
10
15
n(cm
-2
)
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
10
11
10
12
10
n(c
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
Gate
source
SrTiO3
drain
Parylene + HfO2
n obtained
by Hall effect
@RT
Before the MI transition
MI transition at RT
24. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
24https://www.facebook.com/isao.phys
After the MI transition
10
11
10
12
10
13
10
14
10
15
n(cm
-2
)
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
n obtained
by Hall effect
10
11
10
12
10
n(c
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
Gate
source
SrTiO3
drain
@RT
Parylene + HfO2
MI transition at RT But, for to be larger than
its value before the MI transition,
must be negative !!!
25. 10
11
10
12
10
13
10
14
10
15
n(cm
-2
)
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
50
49
C(pF)
10.50
Time (Hours)
VG = 0 V
VG = 8 V
VAC = 0.1 V
f = 1 kHz
50
49
VG=8V
VG=0V
Vac=0.1V
1kHz
0 1Time (hours)
Cins
(pF)
a Rig
Co
Ra
spectral
weight
transfer
spectral
weight
transfer
cb
10
11
10
13
10
15
n(cm
-2
)
6420
VG (V)
1pA
1nA
1袖A
ISD
0
0
0.5
(袖F/cm2)
2
subthreshold
region
metallic
region
exoticmetal
region
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 25
https://www.facebook.com/isao.phys
If changes like
this, enhancement
is explained well
If channel becomes
simply metallic
Change of capacitance @ MI transition
non-metal
metal
26. 10
11
10
12
10
13
10
14
10
15
n(cm
-2
)
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
50
49
C(pF)
10.50
Time (Hours)
VG = 0 V
VG = 8 V
VAC = 0.1 V
f = 1 kHz
50
49
VG=8V
VG=0V
Vac=0.1V
1kHz
0 1Time (hours)
Cins
(pF)
a Rig
Co
Ra
spectral
weight
transfer
spectral
weight
transfer
cb
10
11
10
13
10
15
n(cm
-2
)
6420
VG (V)
1pA
1nA
1袖A
ISD
0
0
0.5
(袖F/cm2)
2
subthreshold
region
metallic
region
exoticmetal
region
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 25
https://www.facebook.com/isao.phys
If changes like
this, enhancement
is explained well
If channel becomes
simply metallic
Change of capacitance @ MI transition
non-metal
metal
32. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 31https://www.facebook.com/isao.phys
Band splitting due to SOC?
ZHICHENG ZHONG, ANNA T 卒OTH, AND KARSTEN HELD
FIG. 1. (Color online) Band structure of t2g orbitals in bulk
SrTiO3 calculated by (a) DFT and by (b) a TB model derived in
this Rapid Communication. In the absence of spin-orbit coupling,
yz, zx, and xy are degenerate at the point. SOC splits the
sixfold-degenerate orbitals into +
7 and +
8 states separated by
O = 29 meV.
(yz
term
Hb
0
Its
agr
dee
are
the
Zhichen Zhong et al.,
Phys. Rev. B 87, 161102(R) (2013)
RAPID COMMUNICATIONS
PHYSICAL REVIEW B 87, 161102(R) (2013)
33. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 32https://www.facebook.com/isao.phys
Band splitting due to SOC?
Yanwu Xie et al.,
Solid State Commun. 197, 25 (2014)
make the intercept of SH between 0 and 1.
Fig. 4. (Color online) Schematic electronic orbits. (a) Fermi surface when the
q2DEG consists of one light (l) and one heavy (h) subband, showing the inner light
circle and the outer heavier star-shaped geometry. The dark and shaded MB1 and
the yellow dashed MB2 indicate two possible magnetic breakdown (MB) orbits. The
green dots indicate the MB tunneling paths. By symmetry there are 4 equivalent
2
2
34. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
33https://www.facebook.com/isao.phys
VG = 4V, VD = 100 mV
B (T)
-10 100
0
-100
100
Rxy(立)Temperature dep. Hall effect
0 50 100 150 200 250 300
1012
10
13
10
14
1015
nhall
nins
n(cm-2
)
T (K)
n(cm-2)
T (K)
3001000 200
1012
1013
1014
1015
n, Hall
n, geometric
"Negative Capacitance"
is seen down to 4K
4袖m
S
D
V1 V2 V3
V4 V5 V6
G B
35. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
34https://www.facebook.com/isao.phys
-10 100
0
-10
10
RxyRHB(立)
B (T)
Non-linear Hall effect
Non-linearity with no hysteresis.
Subtraction of linear term RHB.
Not caused by magnetisation
-10 -8 -6 -4 -2 0 2 4 6 8 10
-100
-80
-60
-40
-20
0
20
40
60
80
100
xy
(立)
H (T)
4K
Fit
Vd = 100 mV
Vg = 4V
B (T)
-10 100
0
-0.1
Rxy(k立)
0.1
Fit by a two-band model
36. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
35https://www.facebook.com/isao.phys
A tale of two bands
Our results
30100 20
T (K)
1014
1011
nL
nH 袖L
100
30100 20
T (K)
0 5 10 15 20 25 30 35
1011
10
12
10
13
1014
n(cm-2
)
T (K)
n1
n2
0 5 10 15 20 25 30
100
1000
袖1
袖2
袖(cm2
/Vs)
T (K)
n(cm-2)
1013
1012
袖H
袖(cm2/Vs)
1000
袖H nH
high mobility &
low density band
袖L nL
low mobility &
high density band
J. S. Kim et al., PRB 82, 201407 (2010)
For LAO/STO system
1016
1013
1000
1
ZHICHENG ZHONG, ANNA T 卒OTH, AND KARSTEN HELD
FIG. 1. (Color online) Band structure of t2g orbitals in bulk
SrTiO3 calculated by (a) DFT and by (b) a TB model derived in
this Rapid Communication. In the absence of spin-orbit coupling,
yz, zx, and xy are degenerate at the point. SOC splits the
sixfold-degenerate orbitals into +
7 and +
8 states separated by
O = 29 meV.
Along the -X(,0,0) direction (here in units of 1/a with
a = 3.92 A being the calculated lattice constant of STO), the
yz band has a small energy dispersion corresponding to a
???
37. M. Lee et al., PRL 107,
256601 (2011)
What is the origin of the Kondo effect?
Magnetic impurity??
Our data
100
R(k立)
1.20
0.96
1.12
1.04
10
T (K)
R(k立)
100
T (K)
3002000
1013
103
n=9.81013 cm-2
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
36https://www.facebook.com/isao.phys
Kondo effect appears !
38. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
M. Lee et al., PRL 107, 256601 (2011)
37https://www.facebook.com/isao.phys
This Kondo effect is unusual
R≠R,5K(立)
200
0
T (K)
10
increasing
carrier density
R≠R,5K(立)
T (K)
10010
200
0
n=9.41013 cm-2
n=9.81013 cm-2
increasing
carrier density
Originated in two bands of itinerant and nearly localised? (orbital Kondo?)
VG n TK TK
Our preliminary data
Or, TK increase as n increases due to Rashba effect?
c.f., D. Mastrogiuseppe et al., PRB 90, 035426 (2014)
39. 36isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
38
zzz
high-k/Parylene to
protect surface
Summary
https://www.facebook.com/isao.phys
Miniaturisation Limit
Use Metal-Insulator Transition
to overcome the scaling limit.
Extremely good
FETwith MIT
Negative Capacitance"Kondo"
effect
nonlinear
Hall effect
two bands
40. 36isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
39
Ongoing/future researches
https://www.facebook.com/isao.phys
VO2
(111) SrTiO3
NiO
RNiO3
RMnO3
SrTi(18O,16O)3
etc
4袖m
G
S D
HfO2/Parylene/SrTiO3 FET
Artificial synapse
& neuron utilising
2D MI transition.
4袖m
S
D
V1 V2 V3
V4 V5 V6
G B
spin degree of freedom is no longer the spin itself but the
so-called chirality, which for a given band and wave vector
k characterizes the orientation of the eigenspinor, which we
label by + and . The resulting Fermi surface is formed by
two circles (ellipses for the anisotropic bands) and shown in
Fig. 9. The peculiar spin structure will be important when we
consider the effect of a magnetic 鍖eld parallel to the interface.
The anisotropic bands have each two minima at ka
0 =
賊mh留/ 2
on the axis corresponding to the heavy mass. The
separated minima become a ring of radius ki
0 = ml留/ 2
in
the isotropic band. A schematic view of the resulting band
structure is given in Fig. 3.
We will see in the following how, due to the density-
dependent Rashba coupling, the band structure, and in par-
ticular its (local) minima 狼i,a
0 = 留ki,a
0 /2 are functions of the
electron density.
D. Field-dependent Rashba coupling
Concerning the dependence of the Rashba coupling on the
electric 鍖eld, in the absence of compelling 鍖rst-principles
calculations, we borrow its functional form from semicon-
ductor physics, while the appearing parameters are inferred
FIG. 3. (Color online) Schematic view of the STO band structure
formed by an isotropic Rashba band (grey) and two anisotropic bands
(orange and blue). The isotropic band has a ring of minima at ki
0 =
m
留/ 2
, while the anisotropic bands have each two minima at ka
0 =
賊mh留/ 2
, where ka
0 is along the direction with the heavy mass mh.
19Multi-band due to Rashba effect
may explain the weird phenomena
of our SrTiO3 FET?
"Quantum phenomena"
1. Quantum oscillation of SrTiO3
2. Quantum Hall effect of SrTiO3
3. Quantum critical point (QCP) of
ferroelectricitsy of SrTi(18O,16O)3
4. Superconductivity of SrTiO3
and SrTi(18O,16O)3