第3回関西NIPS読み会:Temporal Regularized Matrix Factorization for High dimensional Time Series Prediction
1. Temporal Regularized Matrix Factorization
for High-dimensional Time Series Prediction
Hsiang-Fu Yu*, Nikhil Rao**, Inderjit S. Dhillon*
*University of Texas at Austin
**Technicolor Research
発表者:林勝悟
NIPS2016読み会@立命茨木
2017/03/18
25. レビュー
5 2-Confident (read it all; understood it all reasonably well)
1 1-Less confident (might not have understood significant
parts)
6レビュー全て割りとべた褒めで,提案や論文構成に対
するネガティブなコメントは特に無し
25
27. 参考文献
[1] O. Anava, E. Hazan, and A. Zeevi. Online time series prediction with missing data. In
Proceedings of the International Conference on Machine Learning, pages 2191–2199, 2015.
[3] L. Xiong, X. Chen, T.-K. Huang, J. G. Schneider, and J. G. Carbonell. Temporal collaborative
filtering with Bayesian probabilistic tensor factorization. In SIAM International Conference on Data
Mining, pages 223–234, 2010.
[4] N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon. Collaborative filtering with graph information:
Consistency and scalable methods. In Advances in Neural Information Processing Systems 27, 2015.
[5] Z. Chen and A. Cichocki. Nonnegative matrix factorization with temporal smoothness and/or
spatial decorrelation constraints. Laboratory for Advanced Brain Signal Processing, RIKEN, Tech.
Rep, 68, 2005.
[6] M. Roughan, Y. Zhang, W. Willinger, and L. Qiu. Spatio-temporal compressive sensing and
internet traffic matrices (extended version). IEEE/ACM Transactions on Networking, 20(3):662–676,
June 2012.
[7] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu. Spatio-temporal compressive sensing and
internet traffic matrices. SIGCOMM Comput. Commun. Rev., 39(4):267–278, Aug. 2009. ISSN 0146-
4833.
27