This document provides an overview of different number systems including decimal, binary, octal, and hexadecimal. It discusses how to convert between these number systems by using place value and properties of their respective bases. Techniques for converting include dividing or multiplying by the base while tracking remainders. Examples are provided for converting between the different number systems. Common powers and their prefixes for different bases are also defined. The document concludes with discussions of binary addition and multiplication.
1 of 58
Download to read offline
More Related Content
Number systems
1. ITEC 1011 Introduction to Information Technologies
1. Number Systems
Chapt. 2
Location in
course textbook
2. ITEC 1011 Introduction to Information Technologies
Common Number Systems
System Base Symbols
Used by
humans?
Used in
computers?
Decimal 10 0, 1, 9 Yes No
Binary 2 0, 1 No Yes
Octal 8 0, 1, 7 No No
Hexa-
decimal
16 0, 1, 9,
A, B, F
No No
6. ITEC 1011 Introduction to Information Technologies
Conversion Among Bases
The possibilities:
Hexadecimal
Decimal Octal
Binary
pp. 40-46
7. ITEC 1011 Introduction to Information Technologies
Quick Example
2510 = 110012 = 318 = 1916
Base
8. ITEC 1011 Introduction to Information Technologies
Decimal to Decimal (just for fun)
Hexadecimal
Decimal Octal
Binary
Next slide
9. ITEC 1011 Introduction to Information Technologies
12510 => 5 x 100
= 5
2 x 101
= 20
1 x 102
= 100
125
Base
Weight
10. ITEC 1011 Introduction to Information Technologies
Binary to Decimal
Hexadecimal
Decimal Octal
Binary
11. ITEC 1011 Introduction to Information Technologies
Binary to Decimal
Technique
Multiply each bit by 2n
, where n is the weight
of the bit
The weight is the position of the bit, starting
from 0 on the right
Add the results
12. ITEC 1011 Introduction to Information Technologies
Example
1010112 => 1 x 20
= 1
1 x 21
= 2
0 x 22
= 0
1 x 23
= 8
0 x 24
= 0
1 x 25
= 32
4310
Bit 0
13. ITEC 1011 Introduction to Information Technologies
Octal to Decimal
Hexadecimal
Decimal Octal
Binary
14. ITEC 1011 Introduction to Information Technologies
Octal to Decimal
Technique
Multiply each bit by 8n
, where n is the weight
of the bit
The weight is the position of the bit, starting
from 0 on the right
Add the results
15. ITEC 1011 Introduction to Information Technologies
Example
7248 => 4 x 80
= 4
2 x 81
= 16
7 x 82
= 448
46810
16. ITEC 1011 Introduction to Information Technologies
Hexadecimal to Decimal
Hexadecimal
Decimal Octal
Binary
17. ITEC 1011 Introduction to Information Technologies
Hexadecimal to Decimal
Technique
Multiply each bit by 16n
, where n is the
weight of the bit
The weight is the position of the bit, starting
from 0 on the right
Add the results
18. ITEC 1011 Introduction to Information Technologies
Example
ABC16 => C x 160
= 12 x 1 = 12
B x 161
= 11 x 16 = 176
A x 162
= 10 x 256 = 2560
274810
19. ITEC 1011 Introduction to Information Technologies
Decimal to Binary
Hexadecimal
Decimal Octal
Binary
20. ITEC 1011 Introduction to Information Technologies
Decimal to Binary
Technique
Divide by two, keep track of the remainder
First remainder is bit 0 (LSB, least-significant
bit)
Second remainder is bit 1
Etc.
21. ITEC 1011 Introduction to Information Technologies
Example
12510 = ?2
2 125
62 12
31 02
15 12
7 12
3 12
1 12
0 1
12510 = 11111012
22. ITEC 1011 Introduction to Information Technologies
Octal to Binary
Hexadecimal
Decimal Octal
Binary
23. ITEC 1011 Introduction to Information Technologies
Octal to Binary
Technique
Convert each octal digit to a 3-bit equivalent
binary representation
24. ITEC 1011 Introduction to Information Technologies
Example
7058 = ?2
7 0 5
111 000 101
7058 = 1110001012
25. ITEC 1011 Introduction to Information Technologies
Hexadecimal to Binary
Hexadecimal
Decimal Octal
Binary
26. ITEC 1011 Introduction to Information Technologies
Hexadecimal to Binary
Technique
Convert each hexadecimal digit to a 4-bit
equivalent binary representation
27. ITEC 1011 Introduction to Information Technologies
Example
10AF16 = ?2
1 0 A F
0001 0000 1010 1111
10AF16 = 00010000101011112
28. ITEC 1011 Introduction to Information Technologies
Decimal to Octal
Hexadecimal
Decimal Octal
Binary
29. ITEC 1011 Introduction to Information Technologies
Decimal to Octal
Technique
Divide by 8
Keep track of the remainder
30. ITEC 1011 Introduction to Information Technologies
Example
123410 = ?8
8 1234
154 28
19 28
2 38
0 2
123410 = 23228
31. ITEC 1011 Introduction to Information Technologies
Decimal to Hexadecimal
Hexadecimal
Decimal Octal
Binary
32. ITEC 1011 Introduction to Information Technologies
Decimal to Hexadecimal
Technique
Divide by 16
Keep track of the remainder
33. ITEC 1011 Introduction to Information Technologies
Example
123410 = ?16
123410 = 4D216
16 1234
77 216
4 13 = D16
0 4
34. ITEC 1011 Introduction to Information Technologies
Binary to Octal
Hexadecimal
Decimal Octal
Binary
35. ITEC 1011 Introduction to Information Technologies
Binary to Octal
Technique
Group bits in threes, starting on right
Convert to octal digits
36. ITEC 1011 Introduction to Information Technologies
Example
10110101112 = ?8
1 011 010 111
1 3 2 7
10110101112 = 13278
37. ITEC 1011 Introduction to Information Technologies
Binary to Hexadecimal
Hexadecimal
Decimal Octal
Binary
38. ITEC 1011 Introduction to Information Technologies
Binary to Hexadecimal
Technique
Group bits in fours, starting on right
Convert to hexadecimal digits
39. ITEC 1011 Introduction to Information Technologies
Example
10101110112 = ?16
10 1011 1011
2 B B
10101110112 = 2BB16
40. ITEC 1011 Introduction to Information Technologies
Octal to Hexadecimal
Hexadecimal
Decimal Octal
Binary
41. ITEC 1011 Introduction to Information Technologies
Octal to Hexadecimal
Technique
Use binary as an intermediary
42. ITEC 1011 Introduction to Information Technologies
Example
10768 = ?16
1 0 7 6
001 000 111 110
2 3 E
10768 = 23E16
43. ITEC 1011 Introduction to Information Technologies
Hexadecimal to Octal
Hexadecimal
Decimal Octal
Binary
44. ITEC 1011 Introduction to Information Technologies
Hexadecimal to Octal
Technique
Use binary as an intermediary
45. ITEC 1011 Introduction to Information Technologies
Example
1F0C16 = ?8
1 F 0 C
0001 1111 0000 1100
1 7 4 1 4
1F0C16 = 174148
46. ITEC 1011 Introduction to Information Technologies
Exercise Convert ...
Dont use a calculator!
Decimal Binary Octal
Hexa-
decimal
33
1110101
703
1AF
Skip answer Answer
48. ITEC 1011 Introduction to Information Technologies
Common Powers (1 of 2)
Base 10
Power Preface Symbol
10-12
pico p
10-9
nano n
10-6 micro 袖
10-3 milli m
103 kilo k
106
mega M
109
giga G
1012
tera T
Value
.000000000001
.000000001
.000001
.001
1000
1000000
1000000000
1000000000000
49. ITEC 1011 Introduction to Information Technologies
Common Powers (2 of 2)
Base 2
Power Preface Symbol
210 kilo k
220
mega M
230
Giga G
Value
1024
1048576
1073741824
What is the value of k, M, and G?
In computing, particularly w.r.t. memory,
the base-2 interpretation generally applies
50. ITEC 1011 Introduction to Information Technologies
Example
/ 230
=
In the lab
1. Double click on My Computer
2. Right click on C:
3. Click on Properties
51. ITEC 1011 Introduction to Information Technologies
Exercise Free Space
Determine the free space on all drives on
a machine in the lab
Drive
Free space
Bytes GB
A:
C:
D:
E:
etc.
52. ITEC 1011 Introduction to Information Technologies
Review multiplying powers
For common bases, add powers
26
210
= 216
= 65,536
or
26
210
= 64 210
= 64k
ab
ac
= ab+c
53. ITEC 1011 Introduction to Information Technologies
Binary Addition (1 of 2)
Two 1-bit values
pp. 36-38
A B A + B
0 0 0
0 1 1
1 0 1
1 1 10
two
54. ITEC 1011 Introduction to Information Technologies
Binary Addition (2 of 2)
Two n-bit values
Add individual bits
Propagate carries
E.g.,
10101 21
+ 11001 + 25
101110 46
11
55. ITEC 1011 Introduction to Information Technologies
Multiplication (1 of 3)
Decimal (just for fun)
pp. 39
35
x 105
175
000
35
3675
56. ITEC 1011 Introduction to Information Technologies
Multiplication (2 of 3)
Binary, two 1-bit values
A B A B
0 0 0
0 1 0
1 0 0
1 1 1
57. ITEC 1011 Introduction to Information Technologies
Multiplication (3 of 3)
Binary, two n-bit values
As with decimal values
E.g.,
1110
x 1011
1110
1110
0000
1110
10011010