ݺߣ

ݺߣShare a Scribd company logo
Chapter 5 : Bracketing Methods
5.1 : Graphical Method

f(2.1)
f(2.2)
f(2.3)
f(2.4)
f(2.5)
f(2.6)
f(2.7)
f(2.8)
f(2.9)

-

1 PAGE

0.061
1.248
2.567
4.024
5.628
7.376
9.283
11.352
13.589

Numerical Method
5.2 : Bisection Method

? 3 ways to stop iteration :
1- Result of function a or b ? zero
2- Two X's should equal to each other
3- Error = zero or  10 % ( depend on question )

2 PAGE

Numerical Method
5.2 Page 139 :

Iteration
1
2
3
4
5

3 PAGE

0
0
0.25
0.375
0.438

1
0.5
0.5
0.5
0.5

0.5
0.25
0.375
0.438
0.469

0.2
-0.868
-0.308
-0.049
0.076

-----0.5
0.25
0.375
0.438

-----100 %
33.333 %
14.385 %
6.610 %

Numerical Method
5.3 : False-Position Method or Rugula Falsi or Linear Interpolation Method :

C

C

C

5.11 Page 139 :

Iteration
1
2
3
4
5
6
7
8
9
10

2
2.768
3.177
3.364
3.443
3.476
3.489
3.494
3.496
3.497

4 PAGE

-68.686
-44.716
-22.844
-10.177
-4.268
-1.728
-0.660
-0.270
-0.106
-0.045

5
5
5
5
5
5
5
5
5
5

199.508
199.508
199.508
199.508
199.508
199.508
199.508
199.508
199.508
199.508

2.768
3.177
3.364
3.443
3.476
3.489
3.494
3.496
3.497
3.497

-44.716
-22.844
-10.177
-4.268
-1.728
-0.660
-0.270
-0.106
-0.045

-----2.768
3.177
3.364
3.443
3.476
3.489
3.494
3.496

-----12.874 %
5.559 %
2.295 %
0.949 %
0.373 %
0.143 %
0.057 %
0.029 %

Numerical Method
Chapter 6 : Open Methods
6.1 : Simple Fixed Method Iteration Method or Method Successive
Approximation

?

?

5 PAGE

?

Numerical Method
?

?

6 PAGE

Numerical Method
?

?

Iteration
1
2
3
4
5
6
7
8
9
10
11
12

7 PAGE

0.5
0.585
0.526
0.567
0.538
0.558
0.544
0.554
0.547
0.552
0.549
0.551

0.585
0.526
0.567
0.538
0.558
0.544
0.554
0.547
0.552
0.549
0.551
0.549

-----11.217 %
7.231 %
5.390 %
3.584 %
2.574 %
1.805 %
1.280 %
0.906 %
0.546 %
0.363 %
0.364 %

Numerical Method
6.2 : Newton's Raphson Method

-----0
1
2
3

8 PAGE

-----0.5
0.714
0.683
0.682

-0.375
0.078
0.002
-0.001

1.750
2.529
2.399
2.395

3
4.284
4.098
4.092

Numerical Method
6.3 : The Secant Method

------1
0
1
2
3

-----1.9
1.557
1.509
1.5
1.5

-0.960
-0.117
-0.018
0

-2.8
-2.114
-2.018
-2

6.2 Page 171 :
C ) by Newton's Raphson Method :
----- -----0
3
9 PAGE

-3.2

1.5

3.6
Numerical Method

-----------
1
2
3
4
5
6
7

5.133
4.270
3.793
3.6
3.564
3.563
3.563

48.072
12.963
2.949
0.4
0.009
-0.002

55.674
27.179
15.264
11.22
10.515
10.496

38.196
27.840
22.116
19.8
19.368
19.346

1.029
0.527
0.382
0.337
0.347
0.320

D ) by Secant Method :
------1
0
1
2
3
4
5

-----3
4
3.327
3.481
3.586
3.561
3.563

-3.2
6.6
-1.966
-0.798
0.245
-0.023
-0.002

----------25 %
20.228 %
4.424 %
2.928 %
0.702 %
0.056 %

6.9 Page 172 :
B ) by Newton's Raphson Method :
----0
1
2
3

-----3.5
3.366
3.345
3.345

0.606
0.072
0.001

4.513
3.472
3.318

8.150
7.386
7.267

----------13.030
185.925

C ) by Secant Method :
------1
0
1
2
3
4
5
6
7

10 PAGE

-----2.5
3.5
3.063
3.292
3.367
3.343
3.344
3.345
3.345

-0.781
0.606
-0.667
-0.165
0.076
-0.005
-0.002
0.001

----------28.571 %
14.267 %
6.956 %
2.228 %
0.718 %
0.030 %
0.030 %

Numerical Method
6.6 : The System of non linear equations

11 PAGE

Numerical Method
12 PAGE

Numerical Method
Chapter 21 : Newton-Cotes Integration Formulas
21.1 : Trapezoidal Rule

X

4
0.25

4.2
0.238

4.4
0.227

4.6
0.217

4.8
0.208

5
0.2

5.2
0.192

0.2
3.030

0.4
2.798

0.6
2.898

0.8
3.166

1
3.560

1.2
4.070

1.4
4.704

Y

X
Y

13 PAGE

Numerical Method
21.2 : Simpson's Rule
1)

2)

X

4
0.25

4.2
0.238

4.4
0.227

4.6
0.217

4.8
0.208

5
0.2

5.2
0.192

0.2
3.030

0.4
2.798

0.6
2.898

0.8
3.166

1
3.560

1.2
4.070

1.4
4.704

Y

X
Y

14 PAGE

Numerical Method
21.3 : Integration With Un Equal Segments

21.13 Page 628 :
X

0
2

0.05
1.8555

0.15
1.5970

0.25
1.3746

0.35
1.1831

0.475
0.9808

0.6
0.8131

Y

A ) by Analytical mean :

A ) Consider equal interval problem using trapezoidal rule with 8 intervals :

X

0
0

0.5
0.632

1
0.865

1.5
0.950

2
0.982

2.5
0.993

3
0.998

3.5
0.999

4
1

Y

B ) Consider un equal interval problem :
X

0
0

0.1
0.5
0.181 0.632

1.2
0.909

1.4
0.939

2
0.982

2.8
0.996

2.9
0.997

3.2
3.8
0.998 0.999

Y

15 PAGE

Numerical Method

4
1
C ) Check your answer by exact value :

16 PAGE

Numerical Method
Chapter 22 : Integration of Equations
22.1 : Newton's Cotes Algorithms of Equations

17 PAGE

Numerical Method
22.2 : Romberg Integration

X

0
1

0.5
0.667

1
0.5

Y

X

0
1

0.25
0.8

0.5
0.667

0.75
0.571

1
0.5

Y

X

0
1

0.125
0.889

0.25
0.8

0.375
0.727

0.5
0.667

0.625
0.615

0.75
0.571

0.875
0.533

1
0.5

Y

18 PAGE

Numerical Method
X

0
0

1
1

2
1.414

Y

X

0
0

0.5
0.707

1
1

1.5
1.225

2
1.414

Y

X

0
0

0.25
0.5

0.5
0.707

0.75
0.866

1
1

1.25
1.118

1.5
1.225

1.75
1.323

2
1.414

Y

19 PAGE

Numerical Method
22.4 : Gauss Quadrature

22. 3 Page 651 :

20 PAGE

Numerical Method
21 PAGE

Numerical Method
Chapter 18 : Interpolation and Extrapolation
18.1 : Newton's Divided Differences Interpolating Polynomials
Un equal intervals

X
1

19

20

25

30

Y
X
0

1

2
3
5

20
25

7

30

X
2

3

12

147

Y
X
0

2

1
2
5

12
147

22 PAGE

Numerical Method
X
0

-12

1
3
4

6
12

X
0

0

1
2
3

0.8
0.9

23 PAGE

Numerical Method
18.2 : Lagrange Interpolating Polynomials

X
4

3

24

39

Y

24 PAGE

Numerical Method
18.4 : Inverse Interpolation

X
6

24

58

108

18

10

-18

174

90

Y

X
Y

25 PAGE

Numerical Method
Chapter 17 : Least-Square Regression
17.1 : Linear Regression

10
2
3
4

42
58

a)
b)
c)

1

10

10

1

3
4

42
58

126
232

9
16

26 PAGE

-3.6
6.3
-1.8
-0.9

12.96
39.69
3.24
0.81

Numerical Method
5
2
4
6
9
11
12
15
17
19

a)
b)
c)

7
6
9
8
7
10
12
12

0

5

0

0

4
6

7
6

28
36

11
12
15
17
19

8
7
10
12
12

88
84
150
204
228

27 PAGE

16
36

0.144
0.440
0.736
-0.968

0.021
0.194
0.542
0.937

121
144
225
289
361

0.728
-2.080
-0.136
1.160
0.456

0.530
4.326
0.018
1.346
0.208

Numerical Method
17.2 : Polynomial Regression

a)
b)
c)

1.6
4
4
7

4.4
3.4

3

1.6

4.8

9

5
7

4.4
3.4

22
23.8

25
49

Matrix in Calculator

28 PAGE

Mode

14.4
57.6
110
166.6

14.4
64
125
343

81
256
625
2401

5 : Equ

2: anX+bnY+cnZ=dn

Numerical Method
Chapter 25 : Runge-Kutta Methods
25.1 : Euler's Method

X
0

0.4

1.003

2.203

4.009

8.306

Y

29 PAGE

Numerical Method
Modified Euler's Method

X
0

0.805

-0.264

1

1.875

2.811

Y

X
Y

30 PAGE

Numerical Method
25.2 : Improvement of Euler's Method

X
1

1.526

2.109

Y

31 PAGE

Numerical Method
25.3 : Runge-Kutta Method
Second order

X
2

2.205

2.421

2.109

Y

32 PAGE

Numerical Method
33 PAGE

Numerical Method

More Related Content

Numerical Methods