際際滷

際際滷Share a Scribd company logo
NUTRIENT ACQUISITION :
DIGESTION & TRANSPORT
Group 1
DISACCHARIDES
Examples: Sucrose, maltose and cellobiose
May be transported into fungus:
 Intact or
 Hydrolyzed before being transported.
 E.g., In S. cerevisiae, sucrose was converted
to glucose and fructose at the cell surface and
the monosaccharides were transported.
 Isolated cell walls of S. cerevisiae contained
most of the invertase.
 Invertase was solubilized by treated with snail
digestive enzyme in mannitol.
 Protoplast were unable to ferment sucrose, but
could ferment glucose
 Maltose was not located in wall, but retained in
the protoplast.
 Yeast cannot ferment maltose unless the have
been grown on maltose.
CELLULOSE
Structure : microfibrillar substance of linear molecules
packed into crystalline arrays interspersed with
amorphous regions.
Non- ordered structure
Helps in 硫-linkage to adapt to
microenvironment
Native cellulose : Insoluble
: Comminuted to produce fine particulate
suspension
Modified, soluble cellulose derivatives
Carboxymethyl cellulose ( CMC) and Hydroxyethyl
cellulose ( HEC )
- Thickener in Food
Umbelliferyl cellodextrins
 Chromogenic substances
 Enzyme activities measured based on the colored
products
Cellobiohydrolase Endoglucanases
Digest
ONLY Amorphous Region Crystalline Arrays and Amorphous Region
 CBHI and EGI have greater than 50% nucleotide
sequence similarity and about 45% amino acid sequence
similarity.
 CBHII and EGIII were unrelated to each other or the first
pair.
Two reasons for the expression of the genes for the
enzymes in Saccharomyces cerevisiae:
 Since S. cerevisiae has no known exocellular
cellulases, expression of the genes individually resulted in
single-enzyme activities with no cross contamination.
 Since cellulose substrates are highly variable, conversion
of cellulose to glucose may not be optimal with the native
mix from Trichoderma reesei.
 Expression of the four cloned cellulase genes of T. ressei in S. cerevisiae
succeeded by using cDNA clones from the mRNAs to eliminate the introns
that were not correctly spliced by yeast, and by providing suitable yeast
promoters.
 The recombinant enzymes from S. cerevisiae were active toward the
natural substrates, barley 硫-glucan and lichenin, and several artificial
substrates.
 The specific activity and binding of the recombinant CBHII were reduced
in comparison with the natural enzyme, suggesting that the
hyperglycosylation affected activity.

More Related Content

Fungal Nutrient Acquisition: Disaccharides and Cellulose

  • 1. NUTRIENT ACQUISITION : DIGESTION & TRANSPORT Group 1
  • 3. May be transported into fungus: Intact or Hydrolyzed before being transported. E.g., In S. cerevisiae, sucrose was converted to glucose and fructose at the cell surface and the monosaccharides were transported.
  • 4. Isolated cell walls of S. cerevisiae contained most of the invertase. Invertase was solubilized by treated with snail digestive enzyme in mannitol. Protoplast were unable to ferment sucrose, but could ferment glucose Maltose was not located in wall, but retained in the protoplast. Yeast cannot ferment maltose unless the have been grown on maltose.
  • 5. CELLULOSE Structure : microfibrillar substance of linear molecules packed into crystalline arrays interspersed with amorphous regions. Non- ordered structure Helps in 硫-linkage to adapt to microenvironment Native cellulose : Insoluble : Comminuted to produce fine particulate suspension
  • 6. Modified, soluble cellulose derivatives Carboxymethyl cellulose ( CMC) and Hydroxyethyl cellulose ( HEC ) - Thickener in Food Umbelliferyl cellodextrins Chromogenic substances Enzyme activities measured based on the colored products
  • 7. Cellobiohydrolase Endoglucanases Digest ONLY Amorphous Region Crystalline Arrays and Amorphous Region
  • 8. CBHI and EGI have greater than 50% nucleotide sequence similarity and about 45% amino acid sequence similarity. CBHII and EGIII were unrelated to each other or the first pair. Two reasons for the expression of the genes for the enzymes in Saccharomyces cerevisiae: Since S. cerevisiae has no known exocellular cellulases, expression of the genes individually resulted in single-enzyme activities with no cross contamination. Since cellulose substrates are highly variable, conversion of cellulose to glucose may not be optimal with the native mix from Trichoderma reesei.
  • 9. Expression of the four cloned cellulase genes of T. ressei in S. cerevisiae succeeded by using cDNA clones from the mRNAs to eliminate the introns that were not correctly spliced by yeast, and by providing suitable yeast promoters. The recombinant enzymes from S. cerevisiae were active toward the natural substrates, barley 硫-glucan and lichenin, and several artificial substrates. The specific activity and binding of the recombinant CBHII were reduced in comparison with the natural enzyme, suggesting that the hyperglycosylation affected activity.