際際滷

際際滷Share a Scribd company logo
28/12/2014 Object油Recognition
http://www.cs.rochester.edu/~nelson/research/recognition/recognition.html 1/8
油 油
Object油Recognition油Research
Randal油C.油Nelson
Department油of油Computer油Science
University油of油Rochester
Appearance足based油object油recognition油methods油have
recently油demonstrated油good油performance油on油a
variety油of油problems.油However,油many油of油these
methods油either油require油good油whole足object
segmentation,油which油severely油limits油their
performance油in油the油presence油of油clutter,油occlusion,油or
background油changes余油or油utilize油simple油conjunctions油of油low足level
features,油which油causes油crosstalk油problems油as油the油number油of油objects油is
increased.油We油are油investigating油an油appearance足based油object
recognition油system油using油a油keyed,油multi足level油context油representation,
that油ameliorates油many油of油these油problems,油and油can油be油used油with
complex,油curved油shapes.油Pictures油on油this油page油are油from油a油training
database油we油have油used油in油system油tests.
Specifically,油we油utilize油distinctive油intermediate足level油features油in油this
case油automatically油extracted油2足D油boundary油fragments,油as油keys,油which
are油then油verified油within油a油local油context,油and油assembled油within油a油loose
global油context油to油evoke油an油overall油percept.油The油system油demonstrates
extraordinarily油good油recognition油of油a油variety油of油3足D油shapes,油ranging
from油sports油cars油and油fighter油planes油to油snakes油and油lizards油with油full
orthographic油invariance.油We油have油performed油a油number油of油large足scale
experiments,油involving油over油2000油separate油test油images,油that油evaluate
performance油with油increasing油number油of油items油in油the油database,油in油the
28/12/2014 Object油Recognition
http://www.cs.rochester.edu/~nelson/research/recognition/recognition.html 2/8
presence油of油clutter,油background油change,油and油occlusion,油and油also油the
results油of油some油generic油classification油experiments油where油the油system油is
tested油on油objects油never油previously油seen油or油modeled.油To油our
knowledge,油the油results油we油report油are油the油best油in油the油literature油for油full足
sphere油tests油of油general油shapes油with油occlusion油and油clutter油resistance.油
The油basic油idea油is油to油represent油the油visual
appearance油of油an油object油as油a油loosely油structured
combination油of油a油number油of油local油context
regions油keyed油by油distinctive油key油features,油or
fragments.油A油local油context油region油can油be
thought油of油as油an油image油patch油surrounding油the油key油feature油and
containing油a油representation油of油other油features油that油intersect油the油patch.
Now油under油different油conditions油(e.g.油lighting,油background,油changes油in
orientation油etc.)油the油feature油extraction油process油will油find油some油of油these
distinctive油keys,油but油in油general油not油all油of油them.油Also,油even油with油local
contextual油verification,油such油keys油may油well油be油consistent油with油a
number油of油global油hypotheses.油However,油the油fraction油that油can油be油found
by油existing油feature油extraction油processes油is油frequently油sufficient油to
identify油objects油in油the油scene,油once油the油global油evidence油is油assembled.
This油addresses油one油of油the油principle油problems油of油object油recognition,
which油is油that,油in油any油but油rather油artificial油conditions,油it油has油so油far
proved油impossible油to油reliably油segment油whole油objects油on油a油bottom足up
basis.油In油the油current油system,油local油features油based油on油automatically
extracted油boundary油fragments油are油used油to油represent油multiple油2足D
views油(aspects)油of油rigid油3足D油objects,油but油the油basic油idea油could油be
applied油to油other油features油and油other油representations.油
28/12/2014 Object油Recognition
http://www.cs.rochester.edu/~nelson/research/recognition/recognition.html 3/8
The油basic油recognition油strategy油is油to油utilize油a
database油(here油viewed油as油an油associative油memory)
of油key油features油embedded油in油local油contexts,油which
is油organized油so油that油access油via油an油unknown油key
feature油evokes油associated油hypotheses油for油the
identity油and油configuration油of油all油known油objects油that
could油have油produced油such油an油embedded油feature.
These油hypotheses油are油fed油into油a油second油stage
associative油memory,油keyed油by油configurations,
which油lumps油the油hypotheses油into油clusters油that油are油mutually油consistent
within油a油loose油global油context.油This油secondary油database油maintains油a
probabilistic油estimate油of油the油likelihood油of油each油cluster油based油on
statistics油about油the油occurrence油of油the油keys油in油the油primary油database.
The油idea油is油similar油to油a油multi足dimensional油Hough油transform油without
the油space油problems.油In油our油case,油since油3足D油objects油are油represented油by
a油set油of油views,油the油configurations油represent油two油dimensional
transforms油of油specific油views.油Efficient油access油to油the油associative
memories油is油achieved油using油a油hashing油scheme油on油parameters油of油the
keying油features,油followed油by油verification油of油the油local油context.油As
mentioned油above,油this油local油verification油step油gives油the油voting油features
sufficient油power油to油substantially油ameliorate油well油known油problems
with油false油positives油in油Hough足like油voting油schemes.油Details油on
associative油memory
A油fundamental油component油of油the油approach油is油the油use油of油distinctive
local油features油we油call油keys.油A油key油is油any油robustly油extractable油part油or
feature油that油has油sufficient油information油content油to油specify油a
configuration油of油an油associated油object油plus油enough油additional,油pose足
insensitive油(sometimes油called油semi足invariant)油parameters油to油provide
efficient油indexing.油The油local油context油amplifies油the油power油of油the
feature油by油providing油a油means油of油verification.油This油local油verification
step油is油critical,油because油the油invariant油parameters油of油the油key油features
are油relatively油weak油evidence,油leading油to油a油proliferation油of油high足
scoring油false油hypotheses油if油used油alone.油This油is油a油well油known油problem
28/12/2014 Object油Recognition
http://www.cs.rochester.edu/~nelson/research/recognition/recognition.html 4/8
with油voting油schemes,油but油can油be油alleviated油if油the油voting油features油are
sufficiently油powerful.油In油the油current油implementation油we油have油utilized
keys油based油on油extracted油boundary油fragments,油both油straight油and
curved,油but油the油method油is油by油no油means油limited油to油such油keys,油and油we
are油looking油at油several油complementary油feature油types.油Details油on油keys
used.油
In油order油to油use油the油system油with油an油object,
its油appearances油must油be油stored油in油the
associative油memory.油Currently,油this油is油done
by油obtaining油a油number油of油uncluttered
images油of油the油object油from油different
directions.油About油100油views油are油needed油to
cover油the油entire油viewing油sphere油for油the
curve足based油keys油we油have油used.油For油each油view,油key油features油are
extracted,油and油a油number油of油the油strongest油are油stored油in油the油memory
with油associated油information油about油the油object油and油view油that油produced
them,油and油their油relationship油to油an油arbitrarily油specified油2足D
configuration油(position,油orientation,油scale)油for油that油view.
To油recognize油an油object,油that油is油to油answer油the油question油"what油object油is
in油this油image?",油key油features油together油with油their油local油contexts油are
extracted油from油the油image,油and油fed油into油the油associative油memory.油All
matches油are油retrieved,油and油for油each油match,油the油associated油information
is油used油to油compute油a油hypothesis油about油the油identity,油view,油and
configuration油of油a油possible油object.油This油hypothesis油is油fed油to油a油second,
"working"油associative油memory,油where油current油hypotheses油are油stored.
If油any油matches油are油found,油the油evidence油associated油with油them油is
updated油to油reflect油the油new油information.油Otherwise油a油new油hypothesis油is
entered.油The油accumulation油is油not油a油flat油voting油process,油but油depends油on
the油frequency油of油occurrence油of油the油feature油over油the油entire油database,
with油uncommen油features油providing油more油evidence.油The油evidence
combination油scheme油is油Bayesian油if油the油features油are油independent油(they
are油not,油but油we油don't油have油a油better油model,油and油the油results油are油better
28/12/2014 Object油Recognition
http://www.cs.rochester.edu/~nelson/research/recognition/recognition.html 5/8
than油flat油voting).油The油hypothesis油memory油is油them油examined,油and油the
configuration油with油the油most油evidence油selected油as油the油most油probable
answer.油
To油find油an油object油of油known油characteristics油in油a
scene,油that油is油to油answer油the油question油of油the油form
"where油is油the油dog油in油this油image?",油the油same
procedure油is油followed,油except油that油key油feature
matches油are油filtered油on油the油basis油of油whether油the
came油from油a油view油of油a油dog.油This油actually油provides油a油rather油powerful
mechanisms油for油partially油indexed油retrieval,油since油the油filtering油can
occur油on油any油combination油of油attributes油that油we油care油to油associate油with
the油features,油either油in油the油database,油or油from油the油image,油e.g.油"animal",
or油"pink油cup".油Details油of油algorithm.
The油approach油has油several油advantages.油First,油because油it油is油based油on油a
merged油percept油of油local油features油rather油than油global油properties,油the
method油is油robust油to油occlusion油and油background油clutter,油and油does油not
require油prior油segmentation.油This油is油an油advantage油over油systems油based
on油principal油components油template油analysis,油which油are油sensitive油to
occlusion油and油clutter.油Second,油entry油of油objects油into油the油memory油is油an
active,油automatic油procedure.油Essentially,油the油system油explores油the
object油visually油from油different油viewpoints,油accumulating油2足D油views,
until油it油has油seen油enough油not油to油mix油it油up油with油any油other油object油it
knows油about.油Third,油the油method油lends油itself油naturally油to油multi足modal
recognition.油Because油there油is油no油single,油global油structure油for油the油model,
evidence油from油different油kinds油of油keys油can油be油combined油as油easily油as
evidence油from油multiple油keys油of油the油same油type.油The油only油requirement
is油that油the油configuration油descriptions油evoked油by油the油different油keys
have油enough油common油structure油to油allow油evidence油combination
procedures油to油be油used.油This油is油an油advantage油over油conventional
alignment油techniques,油which油typically油require油a油prior油3足D油model油of
the油object.油Finally,油the油probabilistic油nature油of油the油evidence
combination油scheme,油coupled油with油the油formal油definitions油for油semi足
28/12/2014 Object油Recognition
http://www.cs.rochester.edu/~nelson/research/recognition/recognition.html 6/8
invariance油and油robustness油allow油quantitative油predictions油of油the
reliability油of油the油system油to油be油made.油
We油have油run油several油large足scale油performance油tests,
involving,油altogether,油over油2000油separate油test油images.油In
these油experiments油we油investigate油variation油in油performance
with油respect油to油increasing油database油size,油clutter,油and
occlusion.油In油forced油choice油experiments油using油clean油test
images油from油a油24油object油database,油we油obtain油97%
classification油accuracy.油Performance油with油75%油clutter油and油25%
occlusion油is油in油the油90%+油range.油We油have油developed油a油statistical
model油for油predicting油the油performance油in油a油variety油of油situations油from油a
few油basic油measurements油of油score油distributions油for油clean油test油images
and油pure油clutter.油We油also油ran油a油generic油recognition油experiment,油where
the油system油was油trained油on油several油objects油in油each油of油several油several
classes,油(e.g.油planes,油snakes,油cars),油and油asked油to油classify油example
objects油from油the油same油generic油classes,油but油not油in油the油training油set.
Details油of油experiments.油
References
Andrea油Selinger油and油Randal油C.油Nelson,油``A油Perceptual油Grouping
Hierarchy油for油Appearance足Based油3D油Object油Recognition'',油Computer
Vision油and油Image油Understanding,油vol.油76,油no.油1,油October油1999,油pp.83足
92.油Abstract,油gzipped油postscript油(preprint)
Randal油C.油Nelson油and油Andrea油Selinger油``Large足Scale油Tests油of油a
Keyed,油Appearance足Based油3足D油Object油Recognition油System'',油Vision
Research,油Special油issue油on油computational油vision,油Vol.油38,油No.油15足16,
Aug.油1998.油Abstract,油gzipped油postscript油(preprint)
Randal油C.油Nelson油and油Andrea油Selinger油``A油Cubist油Approach油to油Object
Recognition'',油International油Conference油on油Computer油Vision
28/12/2014 Object油Recognition
http://www.cs.rochester.edu/~nelson/research/recognition/recognition.html 7/8
(ICCV98),油Bombay,油India,油January油1998,油614足621.油Abstract,油gzipped
postscript,油also油in油an油extended油version油with油more油complete
description油of油the油algorithms,油and油additional油experiments.
Randal油C.油Nelson,油Visual油Learning油and油the油Development油of
Intelligence,油In油Early油Visual油Learning,油Shree油K.油Nayar油and油Tomaso
Poggio,油Editors,油Oxford油University油Press,油1996,油215足236.油Abstract,
Randal油C.油Nelson,油``From油Visual油Homing油to油Object油Recognition''油,油in
Visual油Navigation,油Yiannis油Aloimonos,油Editor,油Lawrence油Earlbaum
Inc,油1996,油218足250.油Abstract,
Randal油C.油Nelson,油``Memory足Based油Recognition油for油3足D油Objects'',
Proc.油ARPA油Image油Understanding油Workshop,油Palm油Springs油CA,
February油1996,油1305足1310.油Abstract,油gzipped油postscript
Randal油C.油Nelson,油``3足D油Recognition油Via油2足stage油Associative
Memory'',油University油of油Rochester,油Dept油of油Computer油Science油TR
565,油January油1995.油Abstract,油gzipped油postscript
Recap油of油Links油in油Text
Associative油Memory
Key油Features
Recognition油Algorithm
Full油Publication油List
Back油to油research油page
28/12/2014 Object油Recognition
http://www.cs.rochester.edu/~nelson/research/recognition/recognition.html 8/8
Back油to油Randal油Nelson's油home油page
Ad

Recommended

Zhou_HCI_CAVIAR.doc
Zhou_HCI_CAVIAR.doc
butest
Www.cs.berkeley.edu kunal
Www.cs.berkeley.edu kunal
Kunal Kishor Nirala
deadlock detection using Goldman's algorithm by ANIKET CHOUDHURY
deadlock detection using Goldman's algorithm by ANIKET CHOUDHURY
爐爐爐逗爛爐 爐爛爐оぐ爛
Object recognition
Object recognition
saniacorreya
Memory based recognition for 3 d object-kunal
Memory based recognition for 3 d object-kunal
Kunal Kishor Nirala
Object recognition
Object recognition
akkichester
Face Recognition Techniques - An evaluation Study
Face Recognition Techniques - An evaluation Study
Eswar Publications
Image Based Facial Recognition
Image Based Facial Recognition
ijtsrd
3 d recognition via 2-d stage associative memory kunal
3 d recognition via 2-d stage associative memory kunal
Kunal Kishor Nirala
Part2
Part2
khawarbashir
Iccv2009 recognition and learning object categories p1 c01 - classical methods
Iccv2009 recognition and learning object categories p1 c01 - classical methods
zukun
Mit6870 orsu lecture2
Mit6870 orsu lecture2
zukun
Object segmentation by alignment of poselet activations to image contours
Object segmentation by alignment of poselet activations to image contours
irisshicat
IRJET - Automatic Attendance Provision using Image Processing
IRJET - Automatic Attendance Provision using Image Processing
IRJET Journal
Face Recognition System and its Applications
Face Recognition System and its Applications
IRJET Journal
Ijarcet vol-2-issue-4-1383-1388
Ijarcet vol-2-issue-4-1383-1388
Editor IJARCET
Criminal Identification using Arm7
Criminal Identification using Arm7
IRJET Journal
MIT6.870 Grounding Object Recognition and Scene Understanding: lecture 1
MIT6.870 Grounding Object Recognition and Scene Understanding: lecture 1
zukun
Object recognition with cortex like mechanisms pami-07
Object recognition with cortex like mechanisms pami-07
dingggthu
Object Capturing In A Cluttered Scene By Using Point Feature Matching
Object Capturing In A Cluttered Scene By Using Point Feature Matching
IJERA Editor
Face Recognition and Increased Reality System for Mobile Devices
Face Recognition and Increased Reality System for Mobile Devices
ijtsrd
Ck36515520
Ck36515520
IJERA Editor
Built-in Face Recognition for Smart Phone Devices
Built-in Face Recognition for Smart Phone Devices
IRJET Journal
Lecture 08 larry zitnick - undestanding and describing scenes
Lecture 08 larry zitnick - undestanding and describing scenes
mustafa sarac
IRJET - Design and Development of Android Application for Face Detection and ...
IRJET - Design and Development of Android Application for Face Detection and ...
IRJET Journal
2D Features-based Detector and Descriptor Selection System for Hierarchical R...
2D Features-based Detector and Descriptor Selection System for Hierarchical R...
gerogepatton
Object recognition
Object recognition
Geraldyne Gengania
Introduction to Object recognition
Introduction to Object recognition
Ashiq Ullah
Object class recognition by unsupervide scale invariant learning - kunal
Object class recognition by unsupervide scale invariant learning - kunal
Kunal Kishor Nirala
An automatic algorithm for object recognition and detection based on asift ke...
An automatic algorithm for object recognition and detection based on asift ke...
Kunal Kishor Nirala

More Related Content

Similar to Object recognition kunal (20)

3 d recognition via 2-d stage associative memory kunal
3 d recognition via 2-d stage associative memory kunal
Kunal Kishor Nirala
Part2
Part2
khawarbashir
Iccv2009 recognition and learning object categories p1 c01 - classical methods
Iccv2009 recognition and learning object categories p1 c01 - classical methods
zukun
Mit6870 orsu lecture2
Mit6870 orsu lecture2
zukun
Object segmentation by alignment of poselet activations to image contours
Object segmentation by alignment of poselet activations to image contours
irisshicat
IRJET - Automatic Attendance Provision using Image Processing
IRJET - Automatic Attendance Provision using Image Processing
IRJET Journal
Face Recognition System and its Applications
Face Recognition System and its Applications
IRJET Journal
Ijarcet vol-2-issue-4-1383-1388
Ijarcet vol-2-issue-4-1383-1388
Editor IJARCET
Criminal Identification using Arm7
Criminal Identification using Arm7
IRJET Journal
MIT6.870 Grounding Object Recognition and Scene Understanding: lecture 1
MIT6.870 Grounding Object Recognition and Scene Understanding: lecture 1
zukun
Object recognition with cortex like mechanisms pami-07
Object recognition with cortex like mechanisms pami-07
dingggthu
Object Capturing In A Cluttered Scene By Using Point Feature Matching
Object Capturing In A Cluttered Scene By Using Point Feature Matching
IJERA Editor
Face Recognition and Increased Reality System for Mobile Devices
Face Recognition and Increased Reality System for Mobile Devices
ijtsrd
Ck36515520
Ck36515520
IJERA Editor
Built-in Face Recognition for Smart Phone Devices
Built-in Face Recognition for Smart Phone Devices
IRJET Journal
Lecture 08 larry zitnick - undestanding and describing scenes
Lecture 08 larry zitnick - undestanding and describing scenes
mustafa sarac
IRJET - Design and Development of Android Application for Face Detection and ...
IRJET - Design and Development of Android Application for Face Detection and ...
IRJET Journal
2D Features-based Detector and Descriptor Selection System for Hierarchical R...
2D Features-based Detector and Descriptor Selection System for Hierarchical R...
gerogepatton
Object recognition
Object recognition
Geraldyne Gengania
Introduction to Object recognition
Introduction to Object recognition
Ashiq Ullah
3 d recognition via 2-d stage associative memory kunal
3 d recognition via 2-d stage associative memory kunal
Kunal Kishor Nirala
Iccv2009 recognition and learning object categories p1 c01 - classical methods
Iccv2009 recognition and learning object categories p1 c01 - classical methods
zukun
Mit6870 orsu lecture2
Mit6870 orsu lecture2
zukun
Object segmentation by alignment of poselet activations to image contours
Object segmentation by alignment of poselet activations to image contours
irisshicat
IRJET - Automatic Attendance Provision using Image Processing
IRJET - Automatic Attendance Provision using Image Processing
IRJET Journal
Face Recognition System and its Applications
Face Recognition System and its Applications
IRJET Journal
Ijarcet vol-2-issue-4-1383-1388
Ijarcet vol-2-issue-4-1383-1388
Editor IJARCET
Criminal Identification using Arm7
Criminal Identification using Arm7
IRJET Journal
MIT6.870 Grounding Object Recognition and Scene Understanding: lecture 1
MIT6.870 Grounding Object Recognition and Scene Understanding: lecture 1
zukun
Object recognition with cortex like mechanisms pami-07
Object recognition with cortex like mechanisms pami-07
dingggthu
Object Capturing In A Cluttered Scene By Using Point Feature Matching
Object Capturing In A Cluttered Scene By Using Point Feature Matching
IJERA Editor
Face Recognition and Increased Reality System for Mobile Devices
Face Recognition and Increased Reality System for Mobile Devices
ijtsrd
Built-in Face Recognition for Smart Phone Devices
Built-in Face Recognition for Smart Phone Devices
IRJET Journal
Lecture 08 larry zitnick - undestanding and describing scenes
Lecture 08 larry zitnick - undestanding and describing scenes
mustafa sarac
IRJET - Design and Development of Android Application for Face Detection and ...
IRJET - Design and Development of Android Application for Face Detection and ...
IRJET Journal
2D Features-based Detector and Descriptor Selection System for Hierarchical R...
2D Features-based Detector and Descriptor Selection System for Hierarchical R...
gerogepatton
Introduction to Object recognition
Introduction to Object recognition
Ashiq Ullah

More from Kunal Kishor Nirala (6)

Object class recognition by unsupervide scale invariant learning - kunal
Object class recognition by unsupervide scale invariant learning - kunal
Kunal Kishor Nirala
An automatic algorithm for object recognition and detection based on asift ke...
An automatic algorithm for object recognition and detection based on asift ke...
Kunal Kishor Nirala
Object oriented-systems-development-life-cycle ppt
Object oriented-systems-development-life-cycle ppt
Kunal Kishor Nirala
Object oriented and classical software engineering 8th edition v413 hav
Object oriented and classical software engineering 8th edition v413 hav
Kunal Kishor Nirala
Object class recognition by unsupervide scale invariant learning - kunal
Object class recognition by unsupervide scale invariant learning - kunal
Kunal Kishor Nirala
An automatic algorithm for object recognition and detection based on asift ke...
An automatic algorithm for object recognition and detection based on asift ke...
Kunal Kishor Nirala
Object oriented-systems-development-life-cycle ppt
Object oriented-systems-development-life-cycle ppt
Kunal Kishor Nirala
Object oriented and classical software engineering 8th edition v413 hav
Object oriented and classical software engineering 8th edition v413 hav
Kunal Kishor Nirala
Ad

Recently uploaded (20)

Fundamentals of Digital Design_Class_21st May - Copy.pptx
Fundamentals of Digital Design_Class_21st May - Copy.pptx
drdebarshi1993
Structured Programming with C++ :: Kjell Backman
Structured Programming with C++ :: Kjell Backman
Shabista Imam
Stay Safe Women Security Android App Project Report.pdf
Stay Safe Women Security Android App Project Report.pdf
Kamal Acharya
Engineering Mechanics Introduction and its Application
Engineering Mechanics Introduction and its Application
Sakthivel M
Abraham Silberschatz-Operating System Concepts (9th,2012.12).pdf
Abraham Silberschatz-Operating System Concepts (9th,2012.12).pdf
Shabista Imam
Week 6- PC HARDWARE AND MAINTENANCE-THEORY.pptx
Week 6- PC HARDWARE AND MAINTENANCE-THEORY.pptx
dayananda54
Fundamentals of Digital Design_Class_12th April.pptx
Fundamentals of Digital Design_Class_12th April.pptx
drdebarshi1993
COMPOSITE COLUMN IN STEEL CONCRETE COMPOSITES.ppt
COMPOSITE COLUMN IN STEEL CONCRETE COMPOSITES.ppt
ravicivil
Modern multi-proposer consensus implementations
Modern multi-proposer consensus implementations
Fran巽ois Garillot
Proposal for folders structure division in projects.pdf
Proposal for folders structure division in projects.pdf
Mohamed Ahmed
NALCO Green Anode Plant,Compositions of CPC,Pitch
NALCO Green Anode Plant,Compositions of CPC,Pitch
arpitprachi123
machine learning is a advance technology
machine learning is a advance technology
ynancy893
special_edition_using_visual_foxpro_6.pdf
special_edition_using_visual_foxpro_6.pdf
Shabista Imam
WIRELESS COMMUNICATION SECURITY AND ITS PROTECTION METHODS
WIRELESS COMMUNICATION SECURITY AND ITS PROTECTION METHODS
samueljackson3773
Quiz on EV , made fun and progressive !!!
Quiz on EV , made fun and progressive !!!
JaishreeAsokanEEE
Development of Portable Biomass Briquetting Machine (S, A & D)-1.pptx
Development of Portable Biomass Briquetting Machine (S, A & D)-1.pptx
aniket862935
David Boutry - Mentors Junior Developers
David Boutry - Mentors Junior Developers
David Boutry
Microwatt: Open Tiny Core, Big Possibilities
Microwatt: Open Tiny Core, Big Possibilities
IBM
IPL_Logic_Flow.pdf Mainframe IPLMainframe IPL
IPL_Logic_Flow.pdf Mainframe IPLMainframe IPL
KhadijaKhadijaAouadi
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
djiceramil
Fundamentals of Digital Design_Class_21st May - Copy.pptx
Fundamentals of Digital Design_Class_21st May - Copy.pptx
drdebarshi1993
Structured Programming with C++ :: Kjell Backman
Structured Programming with C++ :: Kjell Backman
Shabista Imam
Stay Safe Women Security Android App Project Report.pdf
Stay Safe Women Security Android App Project Report.pdf
Kamal Acharya
Engineering Mechanics Introduction and its Application
Engineering Mechanics Introduction and its Application
Sakthivel M
Abraham Silberschatz-Operating System Concepts (9th,2012.12).pdf
Abraham Silberschatz-Operating System Concepts (9th,2012.12).pdf
Shabista Imam
Week 6- PC HARDWARE AND MAINTENANCE-THEORY.pptx
Week 6- PC HARDWARE AND MAINTENANCE-THEORY.pptx
dayananda54
Fundamentals of Digital Design_Class_12th April.pptx
Fundamentals of Digital Design_Class_12th April.pptx
drdebarshi1993
COMPOSITE COLUMN IN STEEL CONCRETE COMPOSITES.ppt
COMPOSITE COLUMN IN STEEL CONCRETE COMPOSITES.ppt
ravicivil
Modern multi-proposer consensus implementations
Modern multi-proposer consensus implementations
Fran巽ois Garillot
Proposal for folders structure division in projects.pdf
Proposal for folders structure division in projects.pdf
Mohamed Ahmed
NALCO Green Anode Plant,Compositions of CPC,Pitch
NALCO Green Anode Plant,Compositions of CPC,Pitch
arpitprachi123
machine learning is a advance technology
machine learning is a advance technology
ynancy893
special_edition_using_visual_foxpro_6.pdf
special_edition_using_visual_foxpro_6.pdf
Shabista Imam
WIRELESS COMMUNICATION SECURITY AND ITS PROTECTION METHODS
WIRELESS COMMUNICATION SECURITY AND ITS PROTECTION METHODS
samueljackson3773
Quiz on EV , made fun and progressive !!!
Quiz on EV , made fun and progressive !!!
JaishreeAsokanEEE
Development of Portable Biomass Briquetting Machine (S, A & D)-1.pptx
Development of Portable Biomass Briquetting Machine (S, A & D)-1.pptx
aniket862935
David Boutry - Mentors Junior Developers
David Boutry - Mentors Junior Developers
David Boutry
Microwatt: Open Tiny Core, Big Possibilities
Microwatt: Open Tiny Core, Big Possibilities
IBM
IPL_Logic_Flow.pdf Mainframe IPLMainframe IPL
IPL_Logic_Flow.pdf Mainframe IPLMainframe IPL
KhadijaKhadijaAouadi
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
djiceramil
Ad

Object recognition kunal