Makalah ini membahas relasi antara himpunan seperti himpunan bagian, himpunan yang sama, himpunan yang berpotongan, himpunan yang lepas, dua himpunan finit yang ekivalen, dan diagram Venn Euler.
1 of 10
More Related Content
Operasi himpunan
1. [1] Kelompok 2
Kata pengantar
Puji dan syukur kami panjatkan kehadirat Tuhan Yang Maha Esa karena berkat dan
tuntunan-Nya kami kelompok dapat menyelesaikan makalah Pengantar Dasar Matematika ini
dengan baik. Di dalam makalah ini berisikan penjelasan mengenai Relasi antara Himpunan.
Penulis berterima kasih kepada Dosen yang telah memberi bimbingan dan arahan kepada penulis
serta kepada teman-teman yang telah membantu penulis dari tahap awal sampai terselesainya
makalah ini.
Tanpa kerja sama dari kelompok,makalah ini tentulah tidak dapat terselesaikan.
Makalah ini masih jauh dari kesempurnaan, untuk itu perlu adanya kritik dan saran bagi
pembaca.
Akhir kata , semoga makalah ini dapat bermanfaat bagi kita semua.
Tondano, Maret 2013
Penulis,
2. [2] Kelompok 2
Daftar isi
Kata pengantar.....................................................................1
Daftar isi..........................................................2
BAB 1 Pendahuluan
Latar belakang...3
Rumusan masalah..3
Tujuan...................................................3
Manfaat..3
Metode Pengumpulan Data...................................................3
Sistematika.3
BAB 2 Pembahasan
1.1 Himpunan bagian..4
1.2 Himpunan yang sama4
1.3 Himpunan yang berpotongan5
1.4 Himpunan yang lepas5
1.5 Dua himpunan finit yang ekivalen5
1.6 Diagram venn euler...6
BAB 3 Penutup
Kesimpulan..........7
Daftar Pustaka..8
3. [3] Kelompok 2
BAB I
Pendahuluan
A.Latar belakang
Himpunan adalah kumpulan benda atau objek yang dapat didefinisikan dengan jelas, sehingga
dengan tepat dapat diketahui objek yang termasuk himpunan dan yang tidak termasuk dalam
himpunan tersebut.
Syarat tertentu dan jelas dalam menentukan himpunan itu menyebabkan kita dapat membedakan
obyek yang merupakan anggota himpunan dan obyek yang bukan anggota himpunan. Himpunan
yang mempunyai syarat tertentu dan jelas sehingga kita dapat menentukan obyek mana yang
menjadi anggota anggota himpunan itu,contoh Kumpulan hewan berkaki dua antara lain ayam,
itik, dan burung. Kumpulan hewan berkaki dua adalah suatu himpunan, karena setiap disebut
hewan berkaki dua, maka hewan tersebut pasti termasuk dalam kumpulan tersebut dan obyek
mana yang bukan anggota himpunan itu disebut himpunan yang terdefinisi dengan baik,contoh
kumpulan orang kaya,kumpulan ini bukan suatu himpunan.
B.Rumusan masalah
Perumusan masalah dalam makalah ini berisikan antara lain :
Himpunan bagian
Himpunan yang sama
Himpunan yang berpotongan
Himpunan yang lepas
Dua himpunan finit yang ekivalen
Diagram venn euler
C.Tujuan
Menjelaskan tentang relasi antara himpunan dan menyelesaikan soal-soal.
D.Manfaat
Dapat memahami bagaimana cara menghitung relasi antara himpunan
E.Metode pengumpulan data
Cara pengumpulan data dan informasi untuk membuat makalah ini adalah sbb
- Membaca buku
- Pencarian informasi dari internet
F.Sistematika
- Kata pengantar
- Daftar isi
- BAB 1 Pendahuluan
- BAB 2 Isi
- BAB 3 Penutup
4. [4] Kelompok 2
BAB II
Pembahasan
Himpunan Bagian
Relasi ini dinyatakan dengan notasi (dibaca A himpunan bagian atau subset dari B).
Contoh:
1. C = {1, 3, 5} adalah himpunan bagian dari Q = {1, 3, 5, 7, 9} karena 1, 3, 5 yang anggota C
juga menjadi anggota Q. Maka dapat ditulis C Q
2. Diketahui D = {a, i, o, e} dan E = {i, a, e, o}. Karena a, i, o, e yang menjadi anggota D juga
menjadi anggota E, maka dapat ditulis D E
3. Diketahui G = {bilangan bulat genap} dan B = {bilangan bulat}. Maka G B
Himpunan yang Sama
Jika banyaknya anggota himpunan P = banyaknya anggota himpunan Q, atau n(P) = n(Q) maka P dan Q
dikatakan ekuivalen
Contoh :
1. Ditentukan himpunan A = {a, b, c, d} dan B = {b, d, a, c}. Maka himpunan A = B, berarti
{a, b, c, d} = {b, d, a, c} karena setiap anggota himpunan A juga menjadi anggota himpunan
B begitu juga sebaliknya. Dengan demikian urutan anggota tidak diperhatikan.
2. Ditentukan himpunan P = {1, 2, 3} dan Q = {1, 3, 2, 1,2}. Maka himpunan P = Q, berarti {1,
2, 3} = {1, 3, 2, 1, 2} karena setiap anggota himpunan P juga menjadi anggota himpunan Q
begitu juga sebaliknya. Dengan demikian penulisan ulang anggota suatu himpunan tidak
diperhatikan dan ditulis tanpa pengulangan.
3. Ditentukan himpunan K = {x |x 2x 3 = 0} dan L = {3, -1, 1} serta M = {-1,3}. Karena
setiap anggota ketiga himpunan itu sama, maka K = L = M.
Definisi : Himpunan A disebut himpunan bagian (subset) dari himpunan B jika setiap anggota A juga
merupakan anggota B
Definisi : Himpunan A dan himpunan B adalah sama (ditulis A=B) jika dan hanya jika A B dan
B A
5. [5] Kelompok 2
Himpunan yang Berpotongan
Contoh :
1. C = {3, 4, 5, 6} dan D = {2, 5, 8} adalah dua himpunan yang berpotongan, karena ada anggota C yaitu 5
yang menjadi anggota D.
2. Ditentukan X = { x |x2
+ 3x + 2 = 0} dan Y = { x |x2
x 6 = 0}. Maka X dan Y berpotongan, karena X =
{-1, -2} dan Y = {3, -2} ada anggota X yang juga menjadi anggota Y , yaitu -2.
Himpunan yang Lepas
Diketahui A = {burung, ayam, bebek} dan
B = {kucing, anjing, ikan}.
Perhatikan bahwa tidak ada satupun anggota himpunan A yang menjadi anggota himpunan B. Demikian pula
sebaliknya, tidak ada satu pun anggota himpunan B yang menjadi anggota himpunan A. Dalam hal ini
dikatakan bahwa tidak ada anggota persekutuan antara himpunan A dan B. Hubungan antara himpunan A
dan B seperti ini disebut himpunan saling lepas atau saling asing.
Contoh :
1. F = himpunan bilangan bulat positif dan G = himpunan bilangan bulat negatif merupakan dua
himpunan yang saling lepas, karena kedua himpunan itu tidak mempunyai elemen yang sama.
2. Ditentukan V = {1, 3, 5} dan W = {2, 3, 4}. Maka V dan W tidak saling lepas , karena kedua
himpunan itu mempunyai anggota persekutuan yaitu 3.
Dua Himpunan Finit yang Ekivalen
Bilangan Kardinal dari himpunan yang berhingga (finit)
Banyak anggota yang berbeda di dalam suatu himpunan A disebut bilangan kardinal himpunan A,
ditulis n(A) .
Contoh :
1. X = {a, b, c, d} maka n(X) = 4 (Baca : bilangan cardinal himpunan X ada 4)
2. K = himpunan nama-nama hari dalam satu minggu , maka n(K) = 7
Definisi : Dua himpunan A dan B dikatakan berpotongan jika dan hanya jika ada anggota A yang menjadi
anggota B
Definisi : Dua himpunan A dan B dikatakan lepas (ditulis A || B) jika dan hanya jika kedua himpunan itu
tidak kosong dan tidak mempunyai elemen yang sama.
6. [6] Kelompok 2
Contoh :
1. Ditentukan P = {1, 2, 3} dan Q = {a, b, c}. Maka P Q, karena n(P) = n(Q)
2. Ditentukan A = { x |x2
2x + 1 = 0} dan B = {-1} maka A B, tetapi juga A = B
Diagram Venn Euler
Diagram Venn pertama kali diketemukan oleh John Venn, seorang ahli matematika dari Inggris yang
hidup pada tahun 18341923. Dalam diagram Venn, himpunan semesta dinyatakan dengan daerah persegi
panjang, sedangkan himpunan lain dalam semesta pembicaraan dinyatakan dengan kurva mulus tertutup
sederhana dan noktah-noktah untuk menyatakan anggotanya.
Diketahui : S = {0, 1, 2, 3, 4, ..., 9};
P = {0, 1, 2, 3}; dan
Q = {4, 5, 6, 7}
Himpunan S = {0, 1, 2, 3, 4, ..., 9} adalah himpunan semesta (semesta pembicaraan). Dalam diagram Venn,
himpunan semesta dinotasikan dengan S berada di pojok kiri. Perhatikan himpunan P dan Q. Karena tidak
ada anggota persekutuan antara P dan Q, maka P Q = { }. Jadi, dapat dikatakan bahwa kedua himpunan
saling lepas. Dalam hal ini, kurva yang dibatasi oleh himpunan P dan Q saling terpisah. Selanjutnya,
anggota-anggota himpunan P diletakkan pada kurva P, sedangkan anggota-anggota himpunan Q
diletakkan pada kurvaQ. Anggota himpunan S yang tidak menjadi anggota himpunan P dan Q diletakkan
di luar kurva P dan Q.
Diagram Venn-nya seperti di bawah ini
Definisi : Dua himpunan finit A dan B dikatakan ekivalen (ditulis A B) jika dan hanya jika banyak
anggota kedua himpunan itu sama.
S P Q
8 9
0 2
1 3
4 5
6 7
7. [7] Kelompok 2
Himpunan yang berpotongan Himpunan Bagian
Himpunan yang sama Himpunan saling lepas
8. [8] Kelompok 2
BAB 3
KESIMPULAN
Suatu himpunan disebut himpunan bagian (subset) dari suatu himpunan lain jika dan hanya jika setiap
anggota himpunan itu juga menjadi anggota himpunan lain tersebut.
Dua himpunan dikatakan sama jika dan hanya jika kedua himpunan itu merupakan subset satu dan
lainnya.
Dua himpunan dikatakan berpotongan jika dan hanya jika ada anggota himpunan yang satu yang juga
menjadi anggota himpunan lainnya.
Dua himpunan dikatakan lepas jika dan hanya jika kedua himpunan itu tidak kosong dan tidak
mempunyai elemen yang sama.
Banyak anggota yang berbeda di dalam suatu himpunan disebut bilangan cardinal himpunan itu.
Dua himpunan finit dikatakan ekivalen jika dan hanya jika banyak anggota kedua himpunan itu sama.
10. [10] Kelompok
2
LAPORAN KELOMPOK
Kelompok 1
Stella Pailah : bagaimana bentuk dari himpunan semesta yang berbentuk persegi dan segitiga?
Kelompok 2
Yopi Laloring : Apa yang dimaksud dengan diagram Venn?
Kelompok 3
William Sumendap : Bagaimana gambar diagram venn jika himpunan bagian terdapat
himpunan kosong?
Kelompok 4
Abdul malik : dalam 2 himpunan apakah boleh langsung menghasilkan 2 penyelesaian?
Kelompok 5
Reza Sumaila : apa perbedaan himpunan yang berpotongan dan himpunan irisan
Kelompok 6
Julisa Sambur : bagaimana membandingkan 2 himpunan bagian itu?
Kelompok 7
Anderzend Awuy : apa perbedaan himpunan bagian dan himpunan yang sama ?
Kelompok 8
PRESENTASI
Kelompok 9
Wiwin Djojobo: Apa bedanya x |x dan x/x ?
Kelompok 10
Sofia : apa perbedaan diagram venn dan diagram euler?