ݺߣ

ݺߣShare a Scribd company logo
Patterns of p-Electron Delocalization in Aromatic and Antiaromatic Organic Compounds in the Light of the Hückel’s 4n+2 rule
J.	
  Poater,	
  F.	
  Feixas,	
  E.	
  Ma,to,	
  M.	
  Solà	
  
 Ins$tute	
  of	
  Computa$onal	
  Chemistry	
  	
  
Universitat	
  de	
  Girona	
  (Catalonia,	
  Spain)	
  
.    INTRODUCTION	
  TO	
  AROMATICITY	
  
I.  INDICES	
  OF	
  AROMATICITY	
  IN	
  CLASSICAL	
  ORGANIC	
  
     AROMATIC	
  MOLECULES	
  
II.  PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  
IV.  CONCLUSIONS	
  
.      INTRODUCTION	
  TO	
  AROMATICITY	
  	
  



The	
  concept	
  of	
  “aroma,city”	
  is	
  oLen	
  invoked	
  in	
  organic	
  
chemistry	
  textbooks	
  and	
  research	
  works	
  to	
  explain	
  a	
  number	
  
of	
  chemical	
  phenomena.	
  

Terms	
  appearing	
  as	
  ar,cle	
  ,tle,	
  keywords,	
  or	
  abstract	
  	
  
                              ISI	
  (2000-­‐2010)	
  




In	
  2009,	
  in	
  every	
  2	
  hours	
  appeared	
  a	
  paper	
  in	
  which	
  benzene	
  
is	
  in	
  the	
  ,tle,	
  keywords	
  or	
  the	
  abstract!	
  	
  
.     INTRODUCTION	
  TO	
  AROMATICITY	
  	
  


          How	
  to	
  measure	
  aroma,city?	
  

  Aroma,city	
  is	
  not	
  an	
  observable,	
  then	
  there	
  is	
  not	
  
   a	
  unique	
  and	
  generally	
  accepted	
  measure	
  of	
  
   aroma,city.	
  

  Many	
  criteria	
  have	
  been	
  used	
  to	
  develop	
  indices	
  of	
  
   aroma,city:	
  
     –    Energe,c	
  (ASEs,	
  REs,…)	
  
     –    Structural	
  or	
  Geometrical	
  (HOMA,…)	
  
     –    Magne,c	
  (NICS,	
  ring	
  currents,	
  1H	
  NMR…)	
  
     –    Electronic	
  (hardness,	
  ELF,	
  DIs…)	
  
.      INTRODUCTION	
  TO	
  AROMATICITY	
  	
  



 It	
  is	
  your	
  favorite	
  index	
  of	
  aroma,city	
  
                     beaer	
  than	
  mine	
  ?	
  
 Energe,c,	
  structural,	
  magne,c,	
  and	
  electronic	
  criteria	
  are	
  easily	
  
  	
  
measurable	
  but	
  unfortunately	
  they	
  do	
  not	
  always	
  give	
  consistent	
  
results	
  among	
  themselves	
  →	
  Mul,dimensional	
  phenomenon.	
  

 Different	
  indices	
  afford	
  divergent	
  orderings	
  of	
  aroma,city	
  since	
  
  	
  
one	
  compound	
  may	
  be	
  more	
  	
  aroma,c	
  than	
  other	
  in	
  one	
  direc,on	
  
and	
  less	
  aroma,c	
  in	
  another.	
  

 Many	
  authors	
  recommend	
  to	
  perform	
  aroma,city	
  analyses	
  using	
  
     	
  
a	
  set	
  of	
  aroma,city	
  descriptors.	
  
.      INTRODUCTION	
  TO	
  AROMATICITY	
  	
  



It	
  is	
  your	
  favorite	
  index	
  of	
  aroma,city	
  
                    beaer	
  than	
  mine	
  ?	
  
 When	
  a	
  new	
  index	
  is	
  defined,	
  usually	
  the	
  results	
  	
  obtained	
  in	
  a	
  
  	
  
set	
  of	
  aroma,c	
  compounds	
  are	
  correlated	
  with	
  previously	
  defined	
  
indices	
  of	
  aroma,city.	
  

 The	
  mul,dimensional	
  character	
  of	
  aroma,city	
  is	
  	
  some,mes	
  used	
  
  	
  
as	
  a	
  generic	
  excuse	
  to	
  consider	
  any	
  local	
  index	
  of	
  aroma,city	
  
defined	
  a	
  good	
  descriptor	
  irrespec,ve	
  of	
  the	
  results	
  obtained.	
  
 How	
  can	
  one	
  differen,ate	
  methods	
  that	
  provide	
  	
  essen,ally	
  
  	
  
spurious	
  informaIon	
  from	
  those	
  that	
  simply	
  do	
  not	
  correlate	
  
because	
  of	
  the	
  mul,dimensional	
  character	
  of	
  aroma,city?	
  
.      INTRODUCTION	
  TO	
  AROMATICITY	
  	
  



 It	
  is	
  your	
  favorite	
  index	
  of	
  aroma,city	
  
                     beaer	
  than	
  mine	
  ?	
  
 Fortunately,	
  the	
  accumulated	
  experience	
  provides	
  several	
  
  	
  
examples	
  for	
  which	
  most	
  chemists	
  would	
  agree	
  about	
  the	
  expected	
  
aroma,city	
  trends.	
  S,ll	
  most	
  aroma,city	
  descriptors	
  fail	
  to	
  
reproduce	
  certain	
  basic	
  chemical	
  situa,ons.	
  	
  

 We	
  propose	
  to	
  build	
  a	
  set	
  of	
  aroma,city	
  tests	
  using	
  a	
  series	
  of	
  
  	
  
such	
  examples	
  to	
  assess	
  the	
  quality	
  of	
  the	
  informaIon	
  derived	
  
from	
  the	
  different	
  indicators.	
  The	
  chosen	
  tests	
  must	
  fulfill	
  two	
  
requirements:	
  
            The	
  size	
  of	
  the	
  systems	
  involved	
  should	
  be	
  small	
  
            	
  
            Controversial	
  cases	
  must	
  be	
  avoided	
  
            	
  
I.       INDICES	
  OF	
  AROMATICITY	
  IN	
  CLASSICAL	
  ORGANIC	
  AROMATIC	
  MOLECULES	
  



          Indices	
  of	
  aroma,city	
  analyzed	
  
                 Structural	
  or	
  Geometric	
  criteria	
  
  They	
  are	
  based	
  on	
  bond	
  length	
  equaliza,on	
  between	
  single	
  
   and	
  double	
  bonds:	
  
                                                                                                  Ropt	
  =	
  1.388	
  Å	
  
                                                                                                  α	
  =	
  257.7	
  



            J.	
  Kruszewski	
  and	
  T.	
  M.	
  Krygowski	
  Tetrahedron	
  Le>.	
  1972,	
  3839.	
  
   M.	
  K.	
  Cyranski,	
  B.	
  T.	
  Stepien	
  and	
  T.	
  M.	
  Krygowski	
  Tetrahedron	
  2000,	
  56,	
  9663.	
  
I.       INDICES	
  OF	
  AROMATICITY	
  IN	
  CLASSICAL	
  ORGANIC	
  AROMATIC	
  MOLECULES	
  

                         Indices	
  of	
  aroma,city	
  analyzed	
  
                                                MagneIc	
  criteria	
  
	
        Aroma,c	
  ring	
  π-­‐electrons	
  are	
  induced	
  to	
  
          circulate	
  in	
  a	
  strong	
  magne,c	
  field	
  (Ho)	
  such	
  that	
  
          the	
  induced	
  magne,c	
  field	
  is	
  aligned	
  with	
  the	
  
                                                                                                                                                   Hind	
  
          applied	
  field	
  in	
  the	
  vicinity	
  of	
  the	
  aryl	
  protons,	
  but	
  
          opposes	
  the	
  applied	
  field	
  causing	
  shielding	
  (upfield	
  
          shiL)	
  of	
  protons	
  above	
  and	
  below	
  the	
  ring.	
  

                                                             MagneIc	
  shielding	
  tensor	
  
                                                                                        H	
   	
  
                                                                                 z	
  
                                                                                          0



                                                                                                                              	
   	
  
                                                                                                                             R av



                                                                                                                 O    	
  
                                                                                                                                       	
   	
  
       Aroma,c	
  rings	
  have	
  nega,ve	
                                                      *   	
                     N
                                                                                                                                 R0
                                                                                                                                	
  
       NICS	
  values	
  at	
  the	
  center.	
  
                                                                                                              	
   	
  
                                                                                                             R av




                                      P.	
  v.	
  R.	
  Schleyer	
  et	
  al.,	
  J.	
  Am.	
  Chem.	
  Soc.	
  1996,	
  118,	
  6317	
  
I.     INDICES	
  OF	
  AROMATICITY	
  IN	
  CLASSICAL	
  ORGANIC	
  AROMATIC	
  MOLECULES	
  

                Indices	
  of	
  aroma,city	
  analyzed	
  
                                 Electronic	
  criteria	
  
  They	
  are	
  based	
  on	
  the	
  calcula,on	
  of	
  electronic	
  delocaliza,on	
  indices	
  (DIs)	
  
   computed	
  for	
  closed-­‐shell	
  HF	
  or	
  approximate	
  DFT	
  WFs	
  as:	
  


 The	
  sums	
  are	
  over	
  occupied	
  molecular	
  orbitals.	
  DIs	
  measure	
  the	
  number	
  of	
  
  electrons	
  shared	
  between	
  atoms	
  A	
  and	
  B.	
  QTAIM	
  par,,on	
  used.	
  
 The	
  para-­‐delocaliza,on	
  index	
  (PDI)	
  is	
  computed	
  
  	
  
as	
  an	
  average	
  of	
  all	
  possible	
  DI	
  between	
  para-­‐
related	
  carbons	
  in	
  a	
  6-­‐MR.	
  
  he	
  aroma,c	
  fluctua,on	
  index	
  (FLU)	
  is	
  constructed	
  considering	
  the	
  amount	
  of	
  
  T
electron	
  delocaliza,on	
  and	
  also	
  taking	
  into	
  account	
  the	
  similarity	
  of	
  electron	
  
delocaliza,on	
  in	
  adjacent	
  atoms	
  (symmetry).	
  



                       Symmetry	
                    Delocaliza,on	
  
I.     INDICES	
  OF	
  AROMATICITY	
  IN	
  CLASSICAL	
  ORGANIC	
  AROMATIC	
  MOLECULES	
  

            Indices	
  of	
  aroma,city	
  analyzed	
  
                           Electronic	
  criteria	
  
                     MulIcenter	
  delocalizaIon	
  indices	
  
                        A = {A1, A2, …, AN}	
  	
  
          	
   For	
  monodeterminantal	
  closed-­‐shell	
  WFs:	
  




M. Giambiagi, M. S. de Giambiagi, C. D. dos Santos and A. P. de Figuereido, Phys.
Chem. Chem. Phys. 2000, 2, 3381




 P. Bultinck, R. Ponec and S. van Damme, J. Phys. Org. Chem. 2005, 18, 706
I.    INDICES	
  OF	
  AROMATICITY	
  IN	
  CLASSICAL	
  ORGANIC	
  AROMATIC	
  MOLECULES	
  

                     15	
  PROPOSED	
  TESTS	
  




F. Feixas, E. Matito, M. Solà, J. Poater, J. Comput. Chem. 2008, 29, 1543
I.    INDICES	
  OF	
  AROMATICITY	
  IN	
  CLASSICAL	
  ORGANIC	
  AROMATIC	
  MOLECULES	
  




F. Feixas, E. Matito, M. Solà, J. Poater, J. Comput. Chem. 2008, 29, 1543
II.     PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  
  The	
  problem	
  with	
  the	
  calcula,on	
  of	
  mul,center	
  delocaliza,on	
  indices	
  
   is	
  that	
  they	
  are	
  quite	
  expensive,	
  especially	
  for	
  large	
  rings.	
  It	
  would	
  be	
  
   convenient	
  to	
  have	
  an	
  electronic	
  measure	
  of	
  aroma,city	
  based	
  on	
  2c-­‐
   DIs.	
  Something	
  similar	
  to	
  PDI	
  or	
  FLU	
  but	
  more	
  general	
  and	
  effec,ve.	
  	
  
  First	
  we	
  looked	
  at	
  the	
  total	
  and	
  total	
  π	
  electronic	
  delocaliza,on	
  taking	
  
   into	
  account	
  the	
  4n+2	
  Hückel’s	
  rule	
  we	
  should	
  have:	
  


                                        + 2 e-                       + 2 e-




                                        + 2 e-                           + 2 e-




      F. Feixas, E. Matito, M. Solà, J. Poater, J. Phys. Chem. A 2008, 112, 13231
II.       PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  


B3LYP/6-­‐311G(d,p)	
  




                          C6H62+
                               	
         C6H6
                                             	
              C6H62-­‐
                                                                  	
  
δ(C,C’)	
  total
               	
        14.863	
       15.618	
             15.731	
  
  δ(C,C’)	
  π	
          2.614	
        3.369	
             3.482	
  

                     0.755	
                   0.113	
  
   2.614	
                        3.369	
                     3.482	
  


     F. Feixas, E. Matito, M. Solà, J. Poater, J. Phys. Chem. A 2008, 112, 13231
II.    PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  
                                    B3LYP/6-­‐311G(d,p)	
  
       	
  Δ1=P(N)-­‐P(N-­‐2)	
      	
  Δ2=P(N+2)-­‐P(N)	
        diff=Δ2-­‐Δ1	
  




F. Feixas, E. Matito, M. Solà, J. Poater, J. Phys. Chem. A 2008, 112, 13231
II.    PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  




                                          B3LYP/6-­‐31G(d)	
  
II.    PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  



          Symmetry	
  and	
  significant	
  delocaliza,on	
  
          	
  

          	
  meta	
  vs	
  para-­‐delocaliza,on	
  
          	
  

                                                                          1.828	
  
                 1.389	
         1.389	
                    1.008	
                                δ(C,C’)m=0.043	
  
                                                                                      1.008	
  
                                                                                                   δ(C,C’)p=0.009	
  
            1.389	
                    1.389	
  
                                                           0.976	
                    0.976	
   δ(C,C’)m=0.059	
  
                     1.389	
      1.389	
                                                         δ(C,C’)p=0.014	
  
δ(C,C’)m=0.074	
                                                          0.978	
  

δ(C,C’)p=0.100	
  
                         Benzene	
                                      Cyclohexene	
  
II.             PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  




                      1	
            δ1-­‐2	
  

 6	
                                              2	
  


                              δ1-­‐3	
  
         δ1-­‐4	
  
 5	
                                            3	
  

                      4	
  

                                           δ1-­‐2	
                                    δ1-­‐2	
  


                                                   δ1-­‐3	
  
                                                                                             δ1-­‐3	
  

                                                                        δ1-­‐5	
     δ1-­‐4	
  



F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
II.    PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  

How	
  do	
  the	
  electron	
  and	
  geometry	
  relaxa,on	
  affect	
  upon	
  addi,on/extrac,on	
  of	
  2	
  e-­‐?	
  

      1)	
  OPT	
              Full	
  geometry	
  and	
  MO	
  relaxa,ons	
  of	
  all	
  N,	
  N-­‐2	
  and	
  N+2	
  species	
  
      2)	
  GEO	
              Geometry	
  op,miza,on	
  only	
  for	
  N	
  species,	
  N-­‐2	
  and	
  N+2	
  keep	
  the	
  
                               geometry	
  of	
  N,	
  but	
  the	
  MOs	
  are	
  fully	
  relaxed	
  
                                                 N-­‐2	
                        N	
                     N+2	
  
      3)	
  ONLY	
             Geometry	
  op,miza,on	
  only	
  for	
  N	
  species,	
  N-­‐2	
  and	
  N+2	
  keep	
  the	
  
                               geometry	
  and	
  the	
  MOs	
  of	
  the	
  N	
  system	
  
                                              1.385	
       1.385	
                                    1.400	
       1.400	
  


                geometry	
            1.539	
           1.539	
                      1.543	
           1.543	
  


        When	
  analyzing	
  the	
  total	
  electronic	
  delocaliza,on	
  the	
  effect	
  of	
  g1.400	
  
                                          1.385	
   1.385	
                              1.400	
    eometry	
  and	
  
        electron	
  relaxa,on	
  are	
  small	
  enough	
  to	
  be	
  neglected	
  
                geometry	
  
                                        C6H62+	
   D2h	
           C6H6	
   D6h	
      C6H62-­‐	
   D2h	
  
                                                      N-­‐2	
                      N	
                         N+2	
  
                      C6H6                                 N–2              N              N+2                  Δ                        Δ2
                                             C6H6     2+	
  
                                                                D6h	
        C6H6	
   D6h	
          C6H6      2-­‐	
   1
                                                                                                                         D6h	
  
                      OPT           δ1-4tot
                                          1.413	
         0.180
                                                           1.413	
         0.310           0.182               0.130
                                                                                                       1.460	
     1.460	
   -0.127
                                              1.422	
       1.422	
                                    1.501	
       1.501	
  
                Electronic	
  	
       0.987	
           0.987	
                                   1.005	
                   1.005	
  
                  GEO (DI)	
   tot
                Electronic	
  	
   δ1-41.041	
   0.185
              Structure	
                                1.041	
           0.310           0.183 1.052	
   0.125                    -0.128
                                                                                                                             1.052	
  

              Structure	
  (DI)	
          1.413	
   1.413	
                                             1.460	
      1.460	
  

                      ONLY          δ1-4tot
                                          1.422	
  
                                                          0.187
                                                            1.422	
  
                                                                           0.307           0.193               0.120
                                                                                                        1.501	
       1.501	
  
                                                                                                                                    -0.114
                                             C6H62+	
   D2h	
                C6H6	
   D6h	
          C6H62-­‐	
             D2h	
  
                                             C6H62+	
   D2h	
                C6H6	
   D6h	
          C6H62-­‐	
             D2h	
  
  F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
II.        PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  
                                             N-­‐2	
                                               N	
                                         N+2	
  

                                                                     +2e-­‐	
                                        +2e-­‐	
  
 C6H6	
                                                                 Δ1	
                                              Δ2	
  
                                            C6H6+2	
                                             C6H6	
                                         C6H6-­‐2	
  
                                  4π-­‐e	
  an,aroma,c	
                                  6π-­‐e	
  aroma,c	
                           8π-­‐e	
  an,aroma,c	
  

                                                                   N-2                N            N+2             Δ1                  Δ2           diff

                     δ1-­‐2	
                         δ(1-2) 1.270 1.390 1.353                                    0.120          -0.037 -0.157
                                                      δπ(1-2) 0.300 0.425 0.387                                   0.125          -0.038 -0.163
                                                      δ(1-3) 0.148 0.073 0.121 -0.075                                              0.048           0.123
   δ1-­‐4	
     δ1-­‐3	
                              δπ(1-3) 0.107 0.036 0.083 -0.071                                             0.047           0.118
                                                      δ(1-4) 0.050 0.103 0.062                                    0.054          -0.042 -0.095
                                                      δπ(1-4) 0.039 0.094 0.052                                   0.054          -0.041 -0.096
                                                                    Δ1=[N]	
  -­‐	
  [N-­‐2],	
  Δ2=[N+2]	
  –	
  [N]	
  diff=Δ2	
  -­‐	
  Δ1	
  

  ANTIAROMATIC	
                                         AROMATIC	
                       AROMATIC	
                               ANTIAROMATIC	
  
       4N	
                                                4N+2	
                           4N+2	
                                      4N	
  
    δ(1-­‐2)	
  ↑	
               δ(1-­‐3)	
  ↓	
         δ(1-­‐4)	
  ↑	
                   δ(1-­‐2)	
  ↓	
        δ(1-­‐3)	
  ↑	
          δ(1-­‐4)	
  ↓	
  
F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
II.        PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  
                                                              N-­‐2	
                                                N	
                                                N+2	
  

     C8H8	
                                                                              +2e-­‐	
                                           +2e-­‐	
  
                                                                                          Δ1	
                                                Δ2	
  
                                                           C8H82+	
                                                 C8H8	
                                               C8H82-­‐	
  
                                                       6π-­‐e	
  aroma,c	
                            8π-­‐e	
  an,aroma,c	
                                    10π-­‐e	
  aroma,c	
  

                       1	
        δ1-­‐2	
                         C 8H 8           N-2               N            N+2                 Δ1                Δ2               diff
                                                                      δ(1-2) 1.332 1.401 1.361                                    0.069            -0.040 -0.109
                                                                   δπ(1-2) 0.344 0.430 0.409                                      0.087            -0.022 -0.108
                                        δ1-­‐3	
  
                                                                      δ(1-3) 0.113 0.064 0.094 -0.048                                              0.030                0.078
          δ1-­‐5	
             δ1-­‐4	
  
                                               4	
                 δπ(1-3) 0.074 0.029 0.060 -0.046                                                0.031                0.077
                       5	
                                            δ(1-4) 0.020 0.043 0.026                                    0.023            -0.017 -0.040
       dC-­‐C(1-­‐5)	
  >	
  dC-­‐C(1-­‐4)	
                       δπ(1-4) 0.016 0.040 0.023                                      0.023            -0.016 -0.040
                   δ(1-­‐5)	
  >	
  δ(1-­‐4)	
                        δ(1-5) 0.056 0.008 0.042 -0.048                                              0.034                0.082
                                                                   δπ(1-5) 0.054 0.007 0.041 -0.047                                                0.034                0.082
AROMATIC	
                                                ANTIAROMATIC	
                                   ANTIAROMATIC	
                                              AROMATIC	
  
  	
  (N-­‐2)	
                                                	
  (N)	
                                        (N)	
                                                    (N+2)	
  
  δ(1-­‐2)	
  ↑	
                δ(1-­‐3)	
  ↓	
          δ(1-­‐4)	
  ↑	
     δ(1-­‐5)	
  ↓	
             δ(1-­‐2)	
  ↓	
      δ(1-­‐3)	
  ↑	
     δ(1-­‐4)	
  ↓	
        δ(1-­‐5)	
  ↑	
  
F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
II.    PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  


            C6H6                                             C8H8
                                                                                      C8H82+
                                                                                      C8H82-
        C6H62+
        C6H62-
          δ1-2        δ1-3         δ1-4                      δ1-2    δ1-3      δ1-4     δ1-5




ANTIAROMATIC                 AROMATIC               AROMATIC                 ANTIAROMATIC
     4N                        4N±2                   4N±2                        4N
          4,5-MR     6,7-MR     8,9-MR                        4,5-MR         6,7-MR       8,9-MR

 δ1-2   Decrease    Increase   Decrease             δ1-2    Increase        Decrease     Increase

 δ1-3    Increase   Decrease   Increase             δ1-3    Decrease        Increase    Decrease

 δ1-4               Increase   Decrease             δ1-4                    Decrease     Increase

 δ1-5                          Increase             δ1-5                                Decrease


F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
II.     PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  




    6,7-­‐MR	
   C6H6           C 7H 7+           C 7H 7-              8,9-­‐MR	
           C 8H 8           C 9H 9-

                                                                                            1.401            1.382
      δ(1-2)   1.390
                        >	
     1.371
                                          >	
     1.366
                                                                            δ(1-2)
                                                                                                     >	
  
                                                                                            0.064            0.070
               0.073
                                                                            δ(1-3)
                                                                                                     <	
  
      δ(1-3)
                        <	
   0.086 <	
   0.091                             δ(1-4)          0.040    >	
     0.038
      δ(1-4)   0.103    >	
   0.054 >	
   0.039                             δ(1-5)          0.008
                                                                                                     <	
     0.022


                 C6H6	
                                                          C8H8	
  




                                                    C7H7+	
                                                     C9H9-­‐	
  
                                   C7H7-­‐	
  

F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
II.        PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  



                                       N-2(t)               N-2(s)                    N                   N+2(s)   N+2(t)
                                 δπ    2.543                 2.644                3.359                    3.466   3.451
                              δ(1-2)   1.356                 1.251                1.397                    1.349   1.368
                             δπ(1-2)   0.401                 0.287                0.422                    0.382   0.409
                δ1-­‐2	
      δ(1-3)   0.082                 0.125                0.067                    0.119   0.085
                             δπ(1-3)   0.051                 0.088                0.036                    0.082   0.056
                              δ(1-4)   0.109                 0.064                0.102                    0.062   0.092
δ1-­‐4	
   δ1-­‐3	
          δπ(1-4)   0.099                 0.054                0.093                    0.052   0.082
                             FLU       0.009                 0.029                0.000                    0.024   0.004
                              SCI      0.162                -0.001                0.078                    0.003   0.095

                                          ANTIAROMATIC	
                                   AROMATIC	
  
                                           4N	
  (singlet)	
                               4N	
  (triplet)	
  
                                                                                          4N+2	
  (singlet)	
  
                                                δ(1-­‐2)	
  ↑	
       δ(1-­‐3)	
  ↓	
          δ(1-­‐4)	
  ↑	
  


   F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
II.        PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  
                                            D4h	
                                            *	
  Orbital	
  where	
  2e-­‐	
  have	
  been	
  removed	
  
   Al42-­‐	
                                                          N-2(2π e-)
                                                                                             **	
  Orbital	
  where	
  2e-­‐	
  have	
  been	
  added	
  
                                                                                          N-2(0π e-)           N-2(2π e-)             N(2π e-)           N+2(4π e-)
CMO-­‐	
  NICS	
  	
                                    AIM	
        Al4 (a1g)*           Al4 (a2u)*           Al4 (b2g)*               Al42-          Al44- (eg)**

                                                MCI σ+π                 0.197	
              0.182	
              0.325	
              0.359	
               0.222	
  
                    LUMO+1(π	
  virt)	
  
                        eg	
              MCI σ                         0.010	
              0.182	
              0.187	
              0.172	
               0.210	
  
                                                   MCI π                0.187	
              0.000	
              0.187	
              0.187	
               0.012	
  

                     HOMO	
  (π	
  occ)	
  
                                                       δ1-2	

          1.050	
              0.796	
              0.819	
              1.071	
               1.268	
  
                        a2u	
                         δ1-2 σ	

         0.800	
              0.796	
              0.569	
              0.821	
               0.768	
  
                         -­‐17.8	
  
                                                      δ1-2 π	

         0.250	
              0.000	
              0.250	
              0.250	
               0.500	
  
                    HOMO-­‐1(σ	
  occ)	
               δ1-3	

          0.437	
              0.551	
              0.710	
              0.817	
               0.629	
  
                       b2g	
  
                         +10.8	
                      δ1-3 σ	

         0.187	
              0.551	
              0.460	
              0.567	
               0.540	
  
                                                      δ1-3 π	

         0.250	
              0.000	
              0.250	
              0.250	
               0.089	
  
                     HOMO-­‐2(σ	
  occ)	
  
                       a1g	
          AromaIcity	
                          π                    σ                σ	
  +	
  π	
        σ	
  +	
  π              σ	
  	
  
                          -­‐3.9	
  
                         a2u(π)	
  and	
  a1g(σ)	
  orbitals	
  contribute	
  posiIvely	
  to	
  σ	
  and	
  π	
  aromaIcity	
  while	
  b2g(σ)	
  and	
  eg(π)	
  not	
  
F. Feixas, E. Matito, M. Duran, J. Poater, M. Solà Theor. Chem. Acc. 2010, accepted
II.    PATTERNS	
  OF	
  π-­‐ELECTRONIC	
  DELOCALIZATION	
  	
  




               Al42-         Al3Ge-                  Al2Ge2              AlGe3+              Ge42+




Symmetry       D4h            C2v                      C2v                 C2v                 D4h
  MCI         0.356	
        0.206	
                 0.165	
             0.171	
              0.386	
  
 MCI π        0.187	
        0.114	
                 0.102	
             0.128	
              0.187	
  
  δ(1-3)	

   0.818	
        0.771	
                 0.654	
             0.771	
              0.781	
  
 δσ(1-3)	

   0.568	
        0.546	
                 0.469	
             0.527	
              0.531	
  
 δπ(1-3)	

   0.250	
        0.224	
                 0.184	
             0.244	
              0.250	
  



F. Feixas, E. Matito, M. Duran, J. Poater, M. Solà Theor. Chem. Acc. 2010, accepted
Patterns of p-Electron Delocalization in Aromatic and Antiaromatic Organic Compounds in the Light of the Hückel’s 4n+2 rule

More Related Content

Patterns of p-Electron Delocalization in Aromatic and Antiaromatic Organic Compounds in the Light of the Hückel’s 4n+2 rule

  • 2. J.  Poater,  F.  Feixas,  E.  Ma,to,  M.  Solà   Ins$tute  of  Computa$onal  Chemistry     Universitat  de  Girona  (Catalonia,  Spain)  
  • 3. .  INTRODUCTION  TO  AROMATICITY   I.  INDICES  OF  AROMATICITY  IN  CLASSICAL  ORGANIC   AROMATIC  MOLECULES   II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     IV.  CONCLUSIONS  
  • 4. .  INTRODUCTION  TO  AROMATICITY     The  concept  of  “aroma,city”  is  oLen  invoked  in  organic   chemistry  textbooks  and  research  works  to  explain  a  number   of  chemical  phenomena.   Terms  appearing  as  ar,cle  ,tle,  keywords,  or  abstract     ISI  (2000-­‐2010)   In  2009,  in  every  2  hours  appeared  a  paper  in  which  benzene   is  in  the  ,tle,  keywords  or  the  abstract!    
  • 5. .  INTRODUCTION  TO  AROMATICITY     How  to  measure  aroma,city?     Aroma,city  is  not  an  observable,  then  there  is  not   a  unique  and  generally  accepted  measure  of   aroma,city.     Many  criteria  have  been  used  to  develop  indices  of   aroma,city:   –  Energe,c  (ASEs,  REs,…)   –  Structural  or  Geometrical  (HOMA,…)   –  Magne,c  (NICS,  ring  currents,  1H  NMR…)   –  Electronic  (hardness,  ELF,  DIs…)  
  • 6. .  INTRODUCTION  TO  AROMATICITY     It  is  your  favorite  index  of  aroma,city   beaer  than  mine  ?    Energe,c,  structural,  magne,c,  and  electronic  criteria  are  easily     measurable  but  unfortunately  they  do  not  always  give  consistent   results  among  themselves  →  Mul,dimensional  phenomenon.    Different  indices  afford  divergent  orderings  of  aroma,city  since     one  compound  may  be  more    aroma,c  than  other  in  one  direc,on   and  less  aroma,c  in  another.    Many  authors  recommend  to  perform  aroma,city  analyses  using     a  set  of  aroma,city  descriptors.  
  • 7. .  INTRODUCTION  TO  AROMATICITY     It  is  your  favorite  index  of  aroma,city   beaer  than  mine  ?    When  a  new  index  is  defined,  usually  the  results    obtained  in  a     set  of  aroma,c  compounds  are  correlated  with  previously  defined   indices  of  aroma,city.    The  mul,dimensional  character  of  aroma,city  is    some,mes  used     as  a  generic  excuse  to  consider  any  local  index  of  aroma,city   defined  a  good  descriptor  irrespec,ve  of  the  results  obtained.    How  can  one  differen,ate  methods  that  provide    essen,ally     spurious  informaIon  from  those  that  simply  do  not  correlate   because  of  the  mul,dimensional  character  of  aroma,city?  
  • 8. .  INTRODUCTION  TO  AROMATICITY     It  is  your  favorite  index  of  aroma,city   beaer  than  mine  ?    Fortunately,  the  accumulated  experience  provides  several     examples  for  which  most  chemists  would  agree  about  the  expected   aroma,city  trends.  S,ll  most  aroma,city  descriptors  fail  to   reproduce  certain  basic  chemical  situa,ons.      We  propose  to  build  a  set  of  aroma,city  tests  using  a  series  of     such  examples  to  assess  the  quality  of  the  informaIon  derived   from  the  different  indicators.  The  chosen  tests  must  fulfill  two   requirements:    The  size  of  the  systems  involved  should  be  small      Controversial  cases  must  be  avoided    
  • 9. I.  INDICES  OF  AROMATICITY  IN  CLASSICAL  ORGANIC  AROMATIC  MOLECULES   Indices  of  aroma,city  analyzed   Structural  or  Geometric  criteria     They  are  based  on  bond  length  equaliza,on  between  single   and  double  bonds:   Ropt  =  1.388  Å   α  =  257.7   J.  Kruszewski  and  T.  M.  Krygowski  Tetrahedron  Le>.  1972,  3839.   M.  K.  Cyranski,  B.  T.  Stepien  and  T.  M.  Krygowski  Tetrahedron  2000,  56,  9663.  
  • 10. I.  INDICES  OF  AROMATICITY  IN  CLASSICAL  ORGANIC  AROMATIC  MOLECULES   Indices  of  aroma,city  analyzed   MagneIc  criteria     Aroma,c  ring  π-­‐electrons  are  induced  to   circulate  in  a  strong  magne,c  field  (Ho)  such  that   the  induced  magne,c  field  is  aligned  with  the   Hind   applied  field  in  the  vicinity  of  the  aryl  protons,  but   opposes  the  applied  field  causing  shielding  (upfield   shiL)  of  protons  above  and  below  the  ring.   MagneIc  shielding  tensor   H     z   0     R av O       Aroma,c  rings  have  nega,ve   *   N R0   NICS  values  at  the  center.       R av P.  v.  R.  Schleyer  et  al.,  J.  Am.  Chem.  Soc.  1996,  118,  6317  
  • 11. I.  INDICES  OF  AROMATICITY  IN  CLASSICAL  ORGANIC  AROMATIC  MOLECULES   Indices  of  aroma,city  analyzed   Electronic  criteria     They  are  based  on  the  calcula,on  of  electronic  delocaliza,on  indices  (DIs)   computed  for  closed-­‐shell  HF  or  approximate  DFT  WFs  as:    The  sums  are  over  occupied  molecular  orbitals.  DIs  measure  the  number  of   electrons  shared  between  atoms  A  and  B.  QTAIM  par,,on  used.    The  para-­‐delocaliza,on  index  (PDI)  is  computed     as  an  average  of  all  possible  DI  between  para-­‐ related  carbons  in  a  6-­‐MR.     he  aroma,c  fluctua,on  index  (FLU)  is  constructed  considering  the  amount  of   T electron  delocaliza,on  and  also  taking  into  account  the  similarity  of  electron   delocaliza,on  in  adjacent  atoms  (symmetry).   Symmetry   Delocaliza,on  
  • 12. I.  INDICES  OF  AROMATICITY  IN  CLASSICAL  ORGANIC  AROMATIC  MOLECULES   Indices  of  aroma,city  analyzed   Electronic  criteria   MulIcenter  delocalizaIon  indices   A = {A1, A2, …, AN}         For  monodeterminantal  closed-­‐shell  WFs:   M. Giambiagi, M. S. de Giambiagi, C. D. dos Santos and A. P. de Figuereido, Phys. Chem. Chem. Phys. 2000, 2, 3381 P. Bultinck, R. Ponec and S. van Damme, J. Phys. Org. Chem. 2005, 18, 706
  • 13. I.  INDICES  OF  AROMATICITY  IN  CLASSICAL  ORGANIC  AROMATIC  MOLECULES   15  PROPOSED  TESTS   F. Feixas, E. Matito, M. Solà, J. Poater, J. Comput. Chem. 2008, 29, 1543
  • 14. I.  INDICES  OF  AROMATICITY  IN  CLASSICAL  ORGANIC  AROMATIC  MOLECULES   F. Feixas, E. Matito, M. Solà, J. Poater, J. Comput. Chem. 2008, 29, 1543
  • 15. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION       The  problem  with  the  calcula,on  of  mul,center  delocaliza,on  indices   is  that  they  are  quite  expensive,  especially  for  large  rings.  It  would  be   convenient  to  have  an  electronic  measure  of  aroma,city  based  on  2c-­‐ DIs.  Something  similar  to  PDI  or  FLU  but  more  general  and  effec,ve.       First  we  looked  at  the  total  and  total  π  electronic  delocaliza,on  taking   into  account  the  4n+2  Hückel’s  rule  we  should  have:   + 2 e- + 2 e- + 2 e- + 2 e- F. Feixas, E. Matito, M. Solà, J. Poater, J. Phys. Chem. A 2008, 112, 13231
  • 16. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     B3LYP/6-­‐311G(d,p)   C6H62+   C6H6   C6H62-­‐   δ(C,C’)  total   14.863   15.618   15.731   δ(C,C’)  π   2.614   3.369   3.482   0.755   0.113   2.614   3.369   3.482   F. Feixas, E. Matito, M. Solà, J. Poater, J. Phys. Chem. A 2008, 112, 13231
  • 17. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     B3LYP/6-­‐311G(d,p)    Δ1=P(N)-­‐P(N-­‐2)    Δ2=P(N+2)-­‐P(N)   diff=Δ2-­‐Δ1   F. Feixas, E. Matito, M. Solà, J. Poater, J. Phys. Chem. A 2008, 112, 13231
  • 18. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     B3LYP/6-­‐31G(d)  
  • 19. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION      Symmetry  and  significant  delocaliza,on        meta  vs  para-­‐delocaliza,on     1.828   1.389   1.389   1.008   δ(C,C’)m=0.043   1.008   δ(C,C’)p=0.009   1.389   1.389   0.976   0.976   δ(C,C’)m=0.059   1.389   1.389   δ(C,C’)p=0.014   δ(C,C’)m=0.074   0.978   δ(C,C’)p=0.100   Benzene   Cyclohexene  
  • 20. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     1   δ1-­‐2   6   2   δ1-­‐3   δ1-­‐4   5   3   4   δ1-­‐2   δ1-­‐2   δ1-­‐3   δ1-­‐3   δ1-­‐5   δ1-­‐4   F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
  • 21. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     How  do  the  electron  and  geometry  relaxa,on  affect  upon  addi,on/extrac,on  of  2  e-­‐?   1)  OPT   Full  geometry  and  MO  relaxa,ons  of  all  N,  N-­‐2  and  N+2  species   2)  GEO   Geometry  op,miza,on  only  for  N  species,  N-­‐2  and  N+2  keep  the   geometry  of  N,  but  the  MOs  are  fully  relaxed   N-­‐2   N   N+2   3)  ONLY   Geometry  op,miza,on  only  for  N  species,  N-­‐2  and  N+2  keep  the   geometry  and  the  MOs  of  the  N  system   1.385   1.385   1.400   1.400   geometry   1.539   1.539   1.543   1.543   When  analyzing  the  total  electronic  delocaliza,on  the  effect  of  g1.400   1.385   1.385   1.400   eometry  and   electron  relaxa,on  are  small  enough  to  be  neglected   geometry   C6H62+   D2h   C6H6   D6h   C6H62-­‐   D2h   N-­‐2   N   N+2   C6H6 N–2 N N+2 Δ Δ2 C6H6 2+   D6h   C6H6   D6h   C6H6 2-­‐   1 D6h   OPT δ1-4tot 1.413   0.180 1.413   0.310 0.182 0.130 1.460   1.460   -0.127 1.422   1.422   1.501   1.501   Electronic     0.987   0.987   1.005   1.005   GEO (DI)   tot Electronic     δ1-41.041   0.185 Structure   1.041   0.310 0.183 1.052   0.125 -0.128 1.052   Structure  (DI)   1.413   1.413   1.460   1.460   ONLY δ1-4tot 1.422   0.187 1.422   0.307 0.193 0.120 1.501   1.501   -0.114 C6H62+   D2h   C6H6   D6h   C6H62-­‐   D2h   C6H62+   D2h   C6H6   D6h   C6H62-­‐   D2h   F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
  • 22. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     N-­‐2   N   N+2   +2e-­‐   +2e-­‐   C6H6   Δ1   Δ2   C6H6+2   C6H6   C6H6-­‐2   4π-­‐e  an,aroma,c   6π-­‐e  aroma,c   8π-­‐e  an,aroma,c   N-2 N N+2 Δ1 Δ2 diff δ1-­‐2   δ(1-2) 1.270 1.390 1.353 0.120 -0.037 -0.157 δπ(1-2) 0.300 0.425 0.387 0.125 -0.038 -0.163 δ(1-3) 0.148 0.073 0.121 -0.075 0.048 0.123 δ1-­‐4   δ1-­‐3   δπ(1-3) 0.107 0.036 0.083 -0.071 0.047 0.118 δ(1-4) 0.050 0.103 0.062 0.054 -0.042 -0.095 δπ(1-4) 0.039 0.094 0.052 0.054 -0.041 -0.096 Δ1=[N]  -­‐  [N-­‐2],  Δ2=[N+2]  –  [N]  diff=Δ2  -­‐  Δ1   ANTIAROMATIC   AROMATIC   AROMATIC   ANTIAROMATIC   4N   4N+2   4N+2   4N   δ(1-­‐2)  ↑   δ(1-­‐3)  ↓   δ(1-­‐4)  ↑   δ(1-­‐2)  ↓   δ(1-­‐3)  ↑   δ(1-­‐4)  ↓   F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
  • 23. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     N-­‐2   N   N+2   C8H8   +2e-­‐   +2e-­‐   Δ1   Δ2   C8H82+   C8H8   C8H82-­‐   6π-­‐e  aroma,c   8π-­‐e  an,aroma,c   10π-­‐e  aroma,c   1   δ1-­‐2   C 8H 8 N-2 N N+2 Δ1 Δ2 diff δ(1-2) 1.332 1.401 1.361 0.069 -0.040 -0.109 δπ(1-2) 0.344 0.430 0.409 0.087 -0.022 -0.108 δ1-­‐3   δ(1-3) 0.113 0.064 0.094 -0.048 0.030 0.078 δ1-­‐5   δ1-­‐4   4   δπ(1-3) 0.074 0.029 0.060 -0.046 0.031 0.077 5   δ(1-4) 0.020 0.043 0.026 0.023 -0.017 -0.040 dC-­‐C(1-­‐5)  >  dC-­‐C(1-­‐4)   δπ(1-4) 0.016 0.040 0.023 0.023 -0.016 -0.040 δ(1-­‐5)  >  δ(1-­‐4)   δ(1-5) 0.056 0.008 0.042 -0.048 0.034 0.082 δπ(1-5) 0.054 0.007 0.041 -0.047 0.034 0.082 AROMATIC   ANTIAROMATIC   ANTIAROMATIC   AROMATIC    (N-­‐2)    (N)   (N)   (N+2)   δ(1-­‐2)  ↑   δ(1-­‐3)  ↓   δ(1-­‐4)  ↑   δ(1-­‐5)  ↓   δ(1-­‐2)  ↓   δ(1-­‐3)  ↑   δ(1-­‐4)  ↓   δ(1-­‐5)  ↑   F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
  • 24. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     C6H6 C8H8 C8H82+ C8H82- C6H62+ C6H62- δ1-2 δ1-3 δ1-4 δ1-2 δ1-3 δ1-4 δ1-5 ANTIAROMATIC AROMATIC AROMATIC ANTIAROMATIC 4N 4N±2 4N±2 4N 4,5-MR 6,7-MR 8,9-MR 4,5-MR 6,7-MR 8,9-MR δ1-2 Decrease Increase Decrease δ1-2 Increase Decrease Increase δ1-3 Increase Decrease Increase δ1-3 Decrease Increase Decrease δ1-4 Increase Decrease δ1-4 Decrease Increase δ1-5 Increase δ1-5 Decrease F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
  • 25. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     6,7-­‐MR   C6H6 C 7H 7+ C 7H 7- 8,9-­‐MR   C 8H 8 C 9H 9- 1.401 1.382 δ(1-2) 1.390 >   1.371 >   1.366 δ(1-2) >   0.064 0.070 0.073 δ(1-3) <   δ(1-3) <   0.086 <   0.091 δ(1-4) 0.040 >   0.038 δ(1-4) 0.103 >   0.054 >   0.039 δ(1-5) 0.008 <   0.022 C6H6   C8H8   C7H7+   C9H9-­‐   C7H7-­‐   F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
  • 26. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     N-2(t) N-2(s) N N+2(s) N+2(t) δπ 2.543 2.644 3.359 3.466 3.451 δ(1-2) 1.356 1.251 1.397 1.349 1.368 δπ(1-2) 0.401 0.287 0.422 0.382 0.409 δ1-­‐2   δ(1-3) 0.082 0.125 0.067 0.119 0.085 δπ(1-3) 0.051 0.088 0.036 0.082 0.056 δ(1-4) 0.109 0.064 0.102 0.062 0.092 δ1-­‐4   δ1-­‐3   δπ(1-4) 0.099 0.054 0.093 0.052 0.082 FLU 0.009 0.029 0.000 0.024 0.004 SCI 0.162 -0.001 0.078 0.003 0.095 ANTIAROMATIC   AROMATIC   4N  (singlet)   4N  (triplet)   4N+2  (singlet)   δ(1-­‐2)  ↑   δ(1-­‐3)  ↓   δ(1-­‐4)  ↑   F. Feixas, E. Matito, M. Solà, J. Poater, Phys. Chem. Chem. Phys. 2010, 12, 7126
  • 27. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     D4h   *  Orbital  where  2e-­‐  have  been  removed   Al42-­‐   N-2(2π e-) **  Orbital  where  2e-­‐  have  been  added   N-2(0π e-) N-2(2π e-) N(2π e-) N+2(4π e-) CMO-­‐  NICS     AIM   Al4 (a1g)* Al4 (a2u)* Al4 (b2g)* Al42- Al44- (eg)** MCI σ+π 0.197   0.182   0.325   0.359   0.222   LUMO+1(π  virt)   eg   MCI σ 0.010   0.182   0.187   0.172   0.210   MCI π 0.187   0.000   0.187   0.187   0.012   HOMO  (π  occ)   δ1-2 1.050   0.796   0.819   1.071   1.268   a2u   δ1-2 σ 0.800   0.796   0.569   0.821   0.768   -­‐17.8   δ1-2 π 0.250   0.000   0.250   0.250   0.500   HOMO-­‐1(σ  occ)   δ1-3 0.437   0.551   0.710   0.817   0.629   b2g   +10.8   δ1-3 σ 0.187   0.551   0.460   0.567   0.540   δ1-3 π 0.250   0.000   0.250   0.250   0.089   HOMO-­‐2(σ  occ)   a1g   AromaIcity   π σ σ  +  π   σ  +  π σ     -­‐3.9   a2u(π)  and  a1g(σ)  orbitals  contribute  posiIvely  to  σ  and  π  aromaIcity  while  b2g(σ)  and  eg(π)  not   F. Feixas, E. Matito, M. Duran, J. Poater, M. Solà Theor. Chem. Acc. 2010, accepted
  • 28. II.  PATTERNS  OF  π-­‐ELECTRONIC  DELOCALIZATION     Al42- Al3Ge- Al2Ge2 AlGe3+ Ge42+ Symmetry D4h C2v C2v C2v D4h MCI 0.356   0.206   0.165   0.171   0.386   MCI π 0.187   0.114   0.102   0.128   0.187   δ(1-3) 0.818   0.771   0.654   0.771   0.781   δσ(1-3) 0.568   0.546   0.469   0.527   0.531   δπ(1-3) 0.250   0.224   0.184   0.244   0.250   F. Feixas, E. Matito, M. Duran, J. Poater, M. Solà Theor. Chem. Acc. 2010, accepted