際際滷

際際滷Share a Scribd company logo
Linear Equations
Linear Graphs and EquationsUnderstanding Gradient
Sketching linear graphs
Identifying graphsWhat makes a linear equation LINEAR?An equation in one or more variables, each with an exponent of ONLY 1, where these variables are only added or subtracted. For ex :  2x + 7 = 15
4y + 5 = y + 15
3y = -4x + 12, Tentukannilai x jika y = 0 ! So with that definition Which of these equations are linear?x+y = 52x+ 3y = 47x-3y = 14y = 2x-2y=4 x2 + y = 5x = 5xy = 5x2 +y2 = 9y = x2y3
So with that definition Which of these equations are linear?LinearNot Linearx+y = 52x+ 3y = 47x-3y = 14y = 2x-2y=4 x2 + y = 5x = 5xy = 5x2 +y2 = 9y = x2y3
Linear equations
yxLinearNot LinearWhat is a Linear Equation?A linear equation is an equation whose graph is a LINE.
yxWhat is a Linear Equation?The equations we will be graphing have two variables, x and y.4For example,2A solution to the equation is any ordered pair (x , y) that makes the equation true.  -33-1-216The ordered pair (3 , 2) is a solution since,If we were to plot all these ordered pairs on a graph, we would be graphing a line.
yxThe x - values are picked by YOU!Graphing a Linear EquationHow do we graph linear equations?Lets try this one:  y = 3x  2Make a Table of values8y = 3(2)  2 = 8Complete the table by inputting the x - values and calculating the corresponding y - values.5y = 3(1)  2 = 52y = 3(0)  2 = 21y = 3(1)  2 = 14y = 3(2)  2 = 4
yxGraphing a Linear EquationHow about another one!Lets try x  2y = 5.First Step:Write y as a function of xx  2y = 52y = 5  x
yxTake a moment and complete the chartClick the screen when finishedGraphing a Linear EquationHow about another one!Lets try x  2y = 5.Second Step:Make a Table of Values32
Sketching Linear GraphsWhat is y when x is 0?What is x when y is 0?We can now use this to get two sets of coordinates.
Sketching Linear Graphs2-4We know that our line must go through the points (0,-4) and (2,0)To draw a sketch of this graph, we just need to label the important points.
Linear equations
yxTake a moment and complete the chartClick the screen when finishedGraphing a Linear EquationHow about another one!Lets try 4x  3y = 12To makes things easier:Make a Table of Values-134x  3y = 120-40-4
yxGraphing Horizontal & Vertical LinesWhen you are asked to graph a line, and there is only ONE variable in the equation, the line will either be vertical or horizontal.  For example Graph x = 3y =  2Since there are no y  values in this equation, x is always 3 and y can be any other real number.  Graph y = 2Since there are no x  values in this equation, y is always  2 and x can be any other real number.  x = 3
Linear equations
Exercise 1
SlopeParallel linesTheir slopes will be EQUAL.Perpendicular linesTheir slopes will be the   negative reciprocal of each other.
Increase in yGradient =Increase in xGradient / SlopeGradient tells us how steep something is.
For ex; Page 75This child doesnt have a clue about gradient.
GradientIncrease in yGradient =Increase in xWhat is the gradient of the line?Gradient = 5/2 or 2.5
GradientIncrease in yGradient =Increase in xWhat is the gradient of this line?This time there is a decrease in yGradient = -2/4   or   -0.5
Linear equations
Exercise 2
Linear equations
yx4321-10123-1-2
Linear EquationsStandard Form	Ax + By = C				Ex ;  2x + y = 3Slope-intercept form	y = mx + bm = slope/gradientb = y-intercept
Linear equations
Contoh5x  2y = 6 	(Standard Form) 2y	= 6  5xy		= 6  5x		     2	y		=  6      5x		    2       2y	 	= - 3 + 5/2 x	     y = 5/2 x  3 (Slope, y-Intercept)
Slope-intercept formy - interceptGradientEx ;     y = -2x + 3 (Slope, y-Intercept)Linear Graphs Form y = mxdan y = mx + bPage 84 - 87
Linear equations
MenentukanBentukPersamaanjikadiketahuigrafikVideo Contoh
Exercise 4
A Point and The Slope
Always find slope-intercept form first!Find the equation for the line containing the points (4, 2) and (3, 6).Find the slope using the formula.			m = 2  6 			       4  3  m = -4
(4, 2) and (3, 6)m = -42. Find the y-intercept.			y = mx + b			2 = -4  4 + b			2 = -16 + b18 = b
(4, 2) and (3, 6) m = -4   b = 183. Write equation in y = mx + b.y = -4x + 184. Convert to Ax + By = C.4x + y = 18
Linear EquationsBe able to form an equation given		- slope and y-interceptex. m = -3 and b = 5		- a point and the slopeex. ( -4, -1 ) and m = 他		- two pointsex. ( 0, -4 ) and ( -5, -2 )
MenentukanBentukPersamaanjikadiketahuigrafikVideo Contoh
Linear equations
Latihan 1
Latihan 2
Graph Form
Table form
Exercise 5
Relationship between Slope and Linear equations Pertemuan ke-6
Linear equations
y = -3/4 x  6 Slope interceptFalling-3/4 -66/(-3/4) = - 8 -3/4 4/33x + 4y = -6The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeStandard Form
Given our 4 example equations identify all of the followingThe Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeFormy = 遜 x + 5y  = -3x  73x  2y = 94x + 2y = 16x  6y + 1 = 0
y = 遜 x + 5Slope interceptRising遜 5-5/(遜) = -10遜 -2- x +2y = 5The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeStandard Form
y  = -3x  7Slope interceptFalling-3 -7- -7/(-3) = -7/3-3 -73x + y = - 7The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeStandard Form
3x  2y = 9StandardRising3/2 -4.5 or 9/233/2 -2/3y =3/2x + 9/2The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeSlope,intercept Form
4x + 2y = 16StandardFalling-2 84-2 1/2y = -2x + 8The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeSlope,Intercept Form
GeneralFalling遜  2-1遜  -2y = 遜 x + 2The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeSlope,intercept Formx  2y +4= 0
Exercise 6
Drawing with slope
Linear equations
SOAL 1Tentukanpersamaangaris yang  tegaklurusdengangaris4x  3y 6 = 0 danmelaluititik (2, -3)Jawab : Langkah 1 		CariGradien (m) denganmembuatpersamaangarisbentukgradienLangkah 2 Ingat !!! TegakLurus 					(Rubahgradiennya !!!)Langkah 3		gunakan y = mx + b
SOAL 2Hubungangaris3x + 4y  6 = 0 dengangaris-6y = -8x +10 adalahJawab :Langkah 1		CarimdarikeduapersamaanLangkah 2		Sederhanakan, tentukansejajar/ berpotongantegaklurus !
Soal 3Garis 2x +5y  2 = 0 sejajardengangaris 3ax  4y  2 = 0, tentukannilaia!Jawab :Langkah 1		CarimdaripersamaangarisygsudahdiketahuiLangkah 2		Ingat !!! m-nyaSejajarLangkah 3		padapersamaangaris 					3ax  4y  2 = 0, dibuatbentukgradienLangkah 4		Caria dari L.2 & L.3 !
Soal 4Tentukanpersamaangaris yang melaluititik (-2, -3 ) dantegaklurusdengangaris yang melaluititik( 2,3 ) dan (0, 1) Jawab ; Langkah 1		carimdarititik ( 2,3 ) dan(0, 1) Langkah 2		ingattegaklurus m-nyadirubah !!!Langkah 3		cari b dengan y = mx + bLangkah 4		BentukPersamaanGaris !
Soal 5Tentukanpersamaangaris yang melaluititik (-2, 1 ) dansejajardengangaris yang melaluititik ( 4,3 ) dan (-2,-5) Jawab ; Langkah 1		carimdarititik ( 2,3 ) 					dan (0, 1) Langkah 2		ingatSejajarm-nyaTetapLangkah 3		cari b dengan y = mx + bLangkah 4		BentukPersamaanGaris !

More Related Content

Linear equations

  • 2. Linear Graphs and EquationsUnderstanding Gradient
  • 4. Identifying graphsWhat makes a linear equation LINEAR?An equation in one or more variables, each with an exponent of ONLY 1, where these variables are only added or subtracted. For ex : 2x + 7 = 15
  • 5. 4y + 5 = y + 15
  • 6. 3y = -4x + 12, Tentukannilai x jika y = 0 ! So with that definition Which of these equations are linear?x+y = 52x+ 3y = 47x-3y = 14y = 2x-2y=4 x2 + y = 5x = 5xy = 5x2 +y2 = 9y = x2y3
  • 7. So with that definition Which of these equations are linear?LinearNot Linearx+y = 52x+ 3y = 47x-3y = 14y = 2x-2y=4 x2 + y = 5x = 5xy = 5x2 +y2 = 9y = x2y3
  • 9. yxLinearNot LinearWhat is a Linear Equation?A linear equation is an equation whose graph is a LINE.
  • 10. yxWhat is a Linear Equation?The equations we will be graphing have two variables, x and y.4For example,2A solution to the equation is any ordered pair (x , y) that makes the equation true. -33-1-216The ordered pair (3 , 2) is a solution since,If we were to plot all these ordered pairs on a graph, we would be graphing a line.
  • 11. yxThe x - values are picked by YOU!Graphing a Linear EquationHow do we graph linear equations?Lets try this one: y = 3x 2Make a Table of values8y = 3(2) 2 = 8Complete the table by inputting the x - values and calculating the corresponding y - values.5y = 3(1) 2 = 52y = 3(0) 2 = 21y = 3(1) 2 = 14y = 3(2) 2 = 4
  • 12. yxGraphing a Linear EquationHow about another one!Lets try x 2y = 5.First Step:Write y as a function of xx 2y = 52y = 5 x
  • 13. yxTake a moment and complete the chartClick the screen when finishedGraphing a Linear EquationHow about another one!Lets try x 2y = 5.Second Step:Make a Table of Values32
  • 14. Sketching Linear GraphsWhat is y when x is 0?What is x when y is 0?We can now use this to get two sets of coordinates.
  • 15. Sketching Linear Graphs2-4We know that our line must go through the points (0,-4) and (2,0)To draw a sketch of this graph, we just need to label the important points.
  • 17. yxTake a moment and complete the chartClick the screen when finishedGraphing a Linear EquationHow about another one!Lets try 4x 3y = 12To makes things easier:Make a Table of Values-134x 3y = 120-40-4
  • 18. yxGraphing Horizontal & Vertical LinesWhen you are asked to graph a line, and there is only ONE variable in the equation, the line will either be vertical or horizontal. For example Graph x = 3y = 2Since there are no y values in this equation, x is always 3 and y can be any other real number. Graph y = 2Since there are no x values in this equation, y is always 2 and x can be any other real number. x = 3
  • 21. SlopeParallel linesTheir slopes will be EQUAL.Perpendicular linesTheir slopes will be the negative reciprocal of each other.
  • 22. Increase in yGradient =Increase in xGradient / SlopeGradient tells us how steep something is.
  • 23. For ex; Page 75This child doesnt have a clue about gradient.
  • 24. GradientIncrease in yGradient =Increase in xWhat is the gradient of the line?Gradient = 5/2 or 2.5
  • 25. GradientIncrease in yGradient =Increase in xWhat is the gradient of this line?This time there is a decrease in yGradient = -2/4 or -0.5
  • 30. Linear EquationsStandard Form Ax + By = C Ex ; 2x + y = 3Slope-intercept form y = mx + bm = slope/gradientb = y-intercept
  • 32. Contoh5x 2y = 6 (Standard Form) 2y = 6 5xy = 6 5x 2 y = 6 5x 2 2y = - 3 + 5/2 x y = 5/2 x 3 (Slope, y-Intercept)
  • 33. Slope-intercept formy - interceptGradientEx ; y = -2x + 3 (Slope, y-Intercept)Linear Graphs Form y = mxdan y = mx + bPage 84 - 87
  • 37. A Point and The Slope
  • 38. Always find slope-intercept form first!Find the equation for the line containing the points (4, 2) and (3, 6).Find the slope using the formula. m = 2 6 4 3 m = -4
  • 39. (4, 2) and (3, 6)m = -42. Find the y-intercept. y = mx + b 2 = -4 4 + b 2 = -16 + b18 = b
  • 40. (4, 2) and (3, 6) m = -4 b = 183. Write equation in y = mx + b.y = -4x + 184. Convert to Ax + By = C.4x + y = 18
  • 41. Linear EquationsBe able to form an equation given - slope and y-interceptex. m = -3 and b = 5 - a point and the slopeex. ( -4, -1 ) and m = 他 - two pointsex. ( 0, -4 ) and ( -5, -2 )
  • 49. Relationship between Slope and Linear equations Pertemuan ke-6
  • 51. y = -3/4 x 6 Slope interceptFalling-3/4 -66/(-3/4) = - 8 -3/4 4/33x + 4y = -6The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeStandard Form
  • 52. Given our 4 example equations identify all of the followingThe Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeFormy = 遜 x + 5y = -3x 73x 2y = 94x + 2y = 16x 6y + 1 = 0
  • 53. y = 遜 x + 5Slope interceptRising遜 5-5/(遜) = -10遜 -2- x +2y = 5The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeStandard Form
  • 54. y = -3x 7Slope interceptFalling-3 -7- -7/(-3) = -7/3-3 -73x + y = - 7The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeStandard Form
  • 55. 3x 2y = 9StandardRising3/2 -4.5 or 9/233/2 -2/3y =3/2x + 9/2The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeSlope,intercept Form
  • 56. 4x + 2y = 16StandardFalling-2 84-2 1/2y = -2x + 8The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeSlope,Intercept Form
  • 57. GeneralFalling遜 2-1遜 -2y = 遜 x + 2The Equation FormDirectionSlopey-interceptx-interceptParallel SlopePerpendicular SlopeSlope,intercept Formx 2y +4= 0
  • 61. SOAL 1Tentukanpersamaangaris yang tegaklurusdengangaris4x 3y 6 = 0 danmelaluititik (2, -3)Jawab : Langkah 1 CariGradien (m) denganmembuatpersamaangarisbentukgradienLangkah 2 Ingat !!! TegakLurus (Rubahgradiennya !!!)Langkah 3 gunakan y = mx + b
  • 62. SOAL 2Hubungangaris3x + 4y 6 = 0 dengangaris-6y = -8x +10 adalahJawab :Langkah 1 CarimdarikeduapersamaanLangkah 2 Sederhanakan, tentukansejajar/ berpotongantegaklurus !
  • 63. Soal 3Garis 2x +5y 2 = 0 sejajardengangaris 3ax 4y 2 = 0, tentukannilaia!Jawab :Langkah 1 CarimdaripersamaangarisygsudahdiketahuiLangkah 2 Ingat !!! m-nyaSejajarLangkah 3 padapersamaangaris 3ax 4y 2 = 0, dibuatbentukgradienLangkah 4 Caria dari L.2 & L.3 !
  • 64. Soal 4Tentukanpersamaangaris yang melaluititik (-2, -3 ) dantegaklurusdengangaris yang melaluititik( 2,3 ) dan (0, 1) Jawab ; Langkah 1 carimdarititik ( 2,3 ) dan(0, 1) Langkah 2 ingattegaklurus m-nyadirubah !!!Langkah 3 cari b dengan y = mx + bLangkah 4 BentukPersamaanGaris !
  • 65. Soal 5Tentukanpersamaangaris yang melaluititik (-2, 1 ) dansejajardengangaris yang melaluititik ( 4,3 ) dan (-2,-5) Jawab ; Langkah 1 carimdarititik ( 2,3 ) dan (0, 1) Langkah 2 ingatSejajarm-nyaTetapLangkah 3 cari b dengan y = mx + bLangkah 4 BentukPersamaanGaris !
  • 66. SOAL 6Tentukanpersamaangaris yang sejajardengangaris y = x + 8 danmelaluititik (-2, 3)Jawab : Langkah 1 CariGradien (m) daripersamaangarisLangkah 2 Ingat ! Sejajar m-nyatetapLangkah 3 gunakan y = mx + b