ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Supervisors:
Dr. Larry Lines
Dr. Robert Ferguson
Convergence of a full waveform inversion scheme based on PSPI
migration and forward modeling-free approximation: procedure
and validation
Presenter:
Marcelo Guarido de Andrade
Full waveform inversion
2
Full waveform inversion
3
Full waveform inversion
4
? Reduce the cost of a gradient descent FWI routine preserving its
resolution at most
? Replacing the RTM by a PSPI migration
? Reducing cost to estimate the step length
? Re-interpretation of the gradient
Objective
5
? Introduction
? Steepest-descent (gradient) method
? Trial-and-error line search vs. Pica et al. (1990) approximation
? Monochromatic averaged gradient
? Initial model
? Conjugate gradient
? Impedance inversion of the gradient
? Forward modeling-free gradient
? Pre-stack
? Post-stack
? Well calibration of the gradient
? Same initial model
? Conclusions
? Future work
Outline
6
Introduction
7
Introduction
C ? ¡Ô ?? ?
2Minimize
Least Squares
? ??? ? ? ???
8
?(?+?) = ?(?) ? ?(?) ?(?)
m0
?dm
g0
m1
¦Á0
9
Introduction
Velocity(m/s)
Velocity(m/s)
10
Steepest-descent (gradient) method
11
Steepest-descent (gradient) method
96 simulated shots
(¡°real model¡±)
Initial model
(smoothed
velocity)
Synthetic Data
Residuals
PSPI Migration
(Deconvolution
Imaging Condition)
Step length
(linear search and
quadratic fit)
Update ModelConvergence?
Final Model
Yes
No
Mute and Stack
12
Steepest-descent (gradient) method
Acquisition
Type Marine
Number of shots 96
Shot spacing 100m
Shot depth 30m
# of receivers 401
Receiver spacing 10m
Receiver depth 0m
Frequency 10Hz
Processing
Starting frequency 1-6Hz
Iterations per frequency < 16Hz 10
Iterations per frequency > 15Hz 5
Frequency increment < 25Hz 1Hz
Frequency increment > 24Hz 5Hz
Mute Yes
Water bottom mute Yes
Scale factor tests 21
13
Steepest-descent (gradient) method
Model
Depth 3km
Width 10km
Resolution 10m
Min. velocity 1500m/s
Max. velocity 3900m/s
Velocity(m/s)
14
Steepest-descent (gradient) method
Velocity(m/s)
15
Steepest-descent (gradient) method
16
Steepest-descent (gradient) method
17
Steepest-descent (gradient) method
18
Steepest-descent (gradient) method
19
Steepest-descent (gradient) method
20
Steepest-descent (gradient) method
21
Steepest-descent (gradient) method
22
Steepest-descent (gradient) method
Velocity(m/s)
23
Steepest-descent (gradient) method
Velocity(m/s)
24
Steepest-descent (gradient) method
Velocity(m/s)
25
Steepest-descent (gradient) method
26
? Trial-and-error
? Try several step lengths
? Update the model
? Synthetic shot
? L2-norm
? Quadratic fit (3 points)
? Lowest error
? Expensive
Steepest-descent (gradient) method
27
Steepest-descent (gradient) method
? Least Squares:
? Step length:
28
Steepest-descent (gradient) method
Velocity(m/s)
Velocity(m/s)
Initial Model CorrectModel
29
Steepest-descent (gradient) method
Trial-and-error line search
30
Steepest-descent (gradient) method
Pica et al. (1990) approximation
31
Steepest-descent (gradient) method
32
Steepest-descent (gradient) method
Acquisition
Model Marmousi
Number of shots 101
Shot spacing 100m
Shot depth 0m
# of receivers 401
Receiver spacing 10m
Receiver depth 0m
Frequency 10Hz
Processing
Starting frequency 1-4Hz
Iterations per frequency < 13Hz 5
Iterations per frequency > 12Hz 2
Frequency increment < 13Hz 1Hz
Frequency increment > 12Hz 5Hz
Mute Yes
Smooth Yes
Scale factor tests 21
33
Steepest-descent (gradient) method
Velocity(m/s)
34
Steepest-descent (gradient) method
Velocity(m/s)
35
Steepest-descent (gradient) method
Velocity(m/s)
36
Steepest-descent (gradient) method
37
Monochromatic averaged gradient
38
? Monochromatic PSPI migration of the residuals
? Gradient for each frequency
? One step for each gradient
? Average scaled monochromatic gradients
Monochromatic averaged gradient
39
? Starting: low frequency
? Increase frequency band
? Convergence
? By 2Hz
? Maximum: 60Hz
? More migrations as
frequency band gets larger
Monochromatic averaged gradient
40
Monochromatic averaged gradient
Velocity(m/s)
41
Monochromatic averaged gradient
Velocity(m/s)
42
Monochromatic averaged gradient
Velocity(m/s)
43
Monochromatic averaged gradient
44
Monochromatic averaged gradient
Velocity(m/s)
45
Monochromatic averaged gradient
Velocity(m/s)
46
Monochromatic averaged gradient
Velocity(m/s)
47
Monochromatic averaged gradient
Velocity(m/s)
48
Monochromatic averaged gradient
Velocity(m/s)
49
Monochromatic averaged gradient
Velocity(m/s)
50
Monochromatic averaged gradient
51
Monochromatic averaged gradient
Velocity(m/s)
52
Monochromatic averaged gradient
Velocity(m/s)
53
Monochromatic averaged gradient
Velocity(m/s)
54
Monochromatic averaged gradient
Velocity(m/s)
55
Monochromatic averaged gradient
56
Monochromatic averaged gradient
57
Impedance inversion of the gradient
58
? Gradient -> reflection coefficients or impedance?
? Impedance inversion
? FWI as seismic processing tools
? I ¨C impedance inversion
? S ¨C stacking
? M ¨C migration
Impedance inversion of the gradient
59
? Band-Limited Impedance Inversion (BLIMP)
? Depth-to-time and time-to-depth conversions
? Initial model as pilot impedance
? One migration step per iteration
Impedance inversion of the gradient
60
Impedance inversion of the gradient
61
Impedance inversion of the gradient
62
Impedance inversion of the gradient
63
Impedance inversion of the gradient
64
Impedance inversion of the gradient
65
Forward modeling-free gradient
66
Forward modeling-free gradient
And:
Step length requires 2 forward modeling
Linear operators
67
Forward modeling-free gradient
68
Forward modeling-free gradient
69
Forward modeling-free gradient
70
Forward modeling-free gradient
71
Forward modeling-free gradient
72
? Commuting the Migration and Stacking operators
Forward modeling-free gradient
73
? Invert frequencies > 4Hz
? Step length: biased by position
? Select random shot
? Can¡¯t control objective function
Forward modeling-free gradient
74
Forward modeling-free gradient
75
Forward modeling-free gradient
76
Forward modeling-free gradient
77
Forward modeling-free gradient
78
Forward modeling-free gradient
79
Forward modeling-free gradient
80
Forward modeling-free gradient
81
Forward modeling-free gradient
82
Forward modeling-free gradient
83
Well calibration of the gradient
84
? Sonic log
? Storage difference of sonic log and current model (what the
gradient should be)
? Compute gradient
? Compute matching filter between gradient and stored
difference of sonic log and current model
? Convolve matching filter with the whole gradient
? Inverting frequencies > 4Hz
Well calibration of the gradient
85
Well calibration of the gradient
86
Well calibration of the gradient
87
Well calibration of the gradient
88
Well calibration of the gradient
89
Well calibration of the gradient
90
Well calibration of the gradient
91
Well calibration of the gradient
92
Advantages of a forward modeling-free inversion:
? No source (wavelet) estimation
? No need to for any forward modeling
? Cheaper
? More robust to work on real data?
Well calibration of the gradient
93
Same initial model
94
? Simulation of a velocity analysis
? Divide Marmousi in 5 horizontal areas
? Pick one random position inside each area
? Linear interpolation
? Repeat for all columns
? Smooth
Same initial model
95
Same initial model
96
Repeat for all columns
Same initial model
97
Same initial model
98
Same initial model
99
Same initial model
100
Same initial model
101
Same initial model
102
Conclusions
103
? Steepest-descent: works well on simple models
? Least squares step length: cheaper and good
? Monochromatic averaged gradient: higher resolution with high cost
? Conjugate gradient: improved resolution
? Impedance inversion of the gradient: great resolution reducing costs
? Forward modeling-free gradient: pre and post-stack approximations,
cheaper with good resolution
? Well calibration of the gradient: 100% forward modelling-free FWI,
lowest cost with improved resolution
Conclusions
104
? Reverse time migration (RTM)
? Multi-parameter (if possible)
? Extend to 3D
? Real data
? Deep learning (Neural Networks?)
Future work
105
?Dr. Larry Lines
?Dr. Rob Ferguson
?NSERC
?CREWES Sponsors
?Students and staff
?Dr. Kris Innanen
?Dr. Daniel Trad
?Dr. Gary Margrave
?Dr. Babatunde Arenrin
?Dr. Raul Cova
?Dr. Wenyong Pan
?FWI group
?Laura Baird
?Soane Mota dos Santos
Acknowledgments
106
107

More Related Content

PhD Final Presentation by Marcelo Guarido