際際滷

際際滷Share a Scribd company logo
Performance Analysis of Face Detection Systems
Melike Sennur Kocal (028354)
Onur enol (990406)
Face Detection
 Biometric id,Surveillance,Security.
 Too many variations of human face.
 Extracting the face.
Project Aim
 Analyse Performances of 3 Algorithms
Project Aim
 Analyse Performances of 3 Algorithms
 Face Detection Using Local SMQT Features and Split Up
SNoW Classifier
 Face Detection Using Efficient & Rank Deficient
 Simple & Accurate Color Face Detection Algorithm in
Complex Background
Project Aim
 For-Loop for many images
 Cropping the detected faces
 Place the cropped faces into an output folder
 Timer Function for total elapsed time.
Project Aim
 For-Loop for many images
 Cropping the detected faces
 Place the cropped faces into an output folder
 Timer Function for total elapsed time.
 COMPARISON
Face Databases
 HumanScan
 JAFFE
 ORL
 YALE
 Cohn Kanade
 FG-NET
 CVL
Face Databases
 HumanScan 1521 Grayscale
 JAFFE 213 Grayscale
 ORL 400 Grayscale
 YALE 165 Grayscale
 Cohn Kanade 180 Grayscale
 FG-NET 126 Color
 CVL 797 Color
Face Databases
 HumanScan 1521 Grayscale
 JAFFE 213 Grayscale
 ORL 400 Grayscale
 YALE 165 Grayscale
 Cohn Kanade 180 Grayscale
 FG-NET 126 Color
 CVL 797 Color
Efficient & Rank Deficient
SMQT Features
& Split up Snow Classifier
Simple & Accurate
Face Detection Algorithm
in Complex Background
Face Databases
 HumanScan 1521 Grayscale
 JAFFE 213 Grayscale
 ORL 400 Grayscale
 YALE 165 Grayscale
 Cohn Kanade 180 Grayscale
 FG-NET 126 Color
 CVL 797 Color
Efficient & Rank Deficient
SMQT Features
& Split up Snow Classifier
Simple & Accurate
Face Detection Algorithm
in Complex Background
(2x6) + (1x2) = 14 test runs
Name & Color Conversions
 Name & Color Conversions
 Freeware Software IrfanView
Local SMQT & Split Up Snow Classifier
 Main.m
 Facefind.m
 Facefind.dll
 Plotbox.m
 Plotsize.m
Input Image
Convert
From RGB to GrayScale
Convert to Double
Sending image to facefind.dll
Draw Frames
Performance Analysis of Face Detection Systems
main.m
main.m
Facefind.m
Image as double
main.m
Facefind.mFacefind.dll
Image as double
X1,y1,x2,y2
main.m
Facefind.m
Plotbox.m
Facefind.dll
Image as double
X1,y1,x2,y2 X1,y1,x2,y2
main.m
Facefind.m
Plotbox.m Plotsize.m
Facefind.dll
Image as double
X1,y1,x2,y2 X1,y1,x2,y2
Min&Max face sizes
main.m
Facefind.m
Plotbox.m Plotsize.m
Facefind.dll
Image as double
X1,y1,x2,y2 X1,y1,x2,y2
Min&Max face sizes
Modification
Timer Starts
Timer Stops
Modification
Extension Definition for input images
Converting int to str
Path i.e:150.pgm
150 + pgm
Modification
Same as
the original code
x1 x2
y1
y2
Height
output(4)-output(3)
Width
output(2)-output(1)
Output(1) Output(2)
Output(4)
Output(3)
X
Y
Modification
Modification
Converted
to integers
Conversion of coordinates for imcrop() function
Modification
Image input (again)
Rect array
Getting cropped image into matrix tem
Modification
Concatenation i.e; 150+jpg
Cropped image as temp matrix
Full output path (Directory)
JPEG COMPRESSION
ex01.m
Facefind.m
Convertion to x,y,w,h
Facefind.dll
Image as double
x1,y1,x2,y2 X1,y1,x2,y2
rect=[x,y,w,h]
imcrop(image,rect)
image
Cropped image
Run DEMO
 Demonstrating Modified Code on MATLAB
Efficient & Rank Deficient
Performance Analysis of Face Detection Systems
Image
Image Image & Threshold
Fdmex()
Image Image & Threshold
Fdmex()
Image & Threshold
Image Image & Threshold
Fdmex()
x,y,width,height
Image & Threshold
S-array
Image Image & Threshold
Fdmex()
x,y,width,height
Image & Threshold
S-arrayRectangle()
Image Image & Threshold
Fdmex()
x,y,width,height
Image & Threshold
S-arrayRectangle()
Efficient & Rank Deficient
Modification
Behaves like a sort of sensitivity
Get the image
Extension Definition
Efficient & Rank Deficient
Modification
Get coordinates for each face
X1,Y1,W,H
Efficient & Rank Deficient
Modification
Image Image & Threshold
Fdmex()
x,y,width,height
Image & Threshold
Run DEMO
 Demonstrating Modified Code on MATLAB
Simple & Accurate
 Lighting Compensation
 Extracting Skin
 Removing Noise
 Finding Skin Color Blocks
 Checking Face Criterions
Simple & Accurate Modification
Simple & Accurate Modification
Run DEMO
 Demonstrating Modified Code on MATLAB
Test Results
Database
# of
photos
Success (%) Seconds
ORL 400 339 84.75 4,83
YALE 165 142 86.06 2,06
JAFFE 213 213 100 8,67
COHN KANADE 180 176 97.7 32,7
HUMAN SCAN 1521 918 60.355 105,05
FG-NET 126 121 96.031 5,92
AVERAGE 87.50 26,54
Efficient & Rank Deficient Approach
Test Results
Database
# of
photos
Success (%) Seconds
ORL 400 400 100 135,9
YALE 165 165 100 39,462
JAFFE 213 211 99.06 1095,77
COHN KANADE 180 164 91.11 3095,838
HUMAN SCAN 1521 1490 97.96 11159,83
FG-NET 126 126 100 452,06
AVERAGE 98.02 % 2663,14
Using Local SMQT Features & Split Up SNoW Classifier
Test Results
Database # of photos
# of
cropped
photos
# of
correct
photos
(%) Seconds
FG-NET 126 119 75 59.5 102.83
CVL 797 752 575 72.1 4283.835
A Simple & Accurate
Face Detection Algorithm in Complex Background
Discussion of Results
Discussion of Results
Discussion of Results
Discussion of Results
Discussion of Results
Conclusion
Local SMQT & Split Up Snow
Classifier
Efficient & Rank Deficient
% 98 SUCCESS % 87.5 SUCCESS
2663,14 seconds 26,54 seconds
Conclusion
Local SMQT & Split Up Snow
Classifier
Efficient & Rank Deficient
% 98 SUCCESS % 87.5 SUCCESS
2663,14 seconds 26,54 seconds
CVL FG-NET
% 98 SUCCESS % 87.5 SUCCESS
4238,835 seconds 102,83 seconds
5.3 secondsimage 0.8 secondsimage

More Related Content

Performance Analysis of Face Detection Systems