1. The document describes equations of motion involving acceleration, velocity, and force for various systems. It provides equations relating acceleration, velocity, position, mass, and applied forces over time.
2. Examples of equations of motion presented include those for constant acceleration in one dimension, motion under a central force, damped harmonic motion, and projectile motion under gravity.
3. Key concepts discussed are Newton's laws of motion, relationships between acceleration, velocity, position, and time through integration, and how applied forces relate to acceleration through F=ma.
1 of 27
Download to read offline
More Related Content
????????????????? Ppt
1. ? 1 F F F
? ? ? F F
- F F ? a(t)
- F F ? F a(x)
- F F ? a(v)
v v v
v dv
a=
dt
¡Ò adt = ¡Ò dv
v v v
v dx
v=
dt
¡Ò v dt = ¡Ò dx
2. ? F F F
v v v
a (t ) = (2t + 3t ? t + 4) ?
4 2
j v (t ), y (t )
a(t)
y
t=0,yi=0,vi=0
v k ? v
a ( x) = ? xi k m F v (x)
m a(x)
x
t=0,xi=0,vi=4m/s i
3. ? F F F
v GM E ? G,ME F
v
a( z) = ? 2 k v (z )
z a(z)
z
t=0,zi=6,vi= 6 m/s k
v b ? v v
a (v) = ? vj b m F v (t ), y (t )
m
a(v)
y
t=0,yi=0,vi=8m/s j
4. ? F F F
v ?
v v
a (t ) = 3t 2i + 2t? ? 4k
? j v (t ), r (t )
Z v ?
t=0 v (t = 0) = 3i + 2 ? ? 4k
? j
v ?
ri
r (t = 0) = 2i + 2 ? + 3k
? j
y
v v
¡Ò adt = ¡Ò dv
x
v
v (t )
v v ?
¡Ò ?
(3t 2i + 2t? ? 4k ) dt =
? j ¡Ò
v
dv v (t ) = (t 3 + 3)i + (t 2 + 2) ? ? (4t + 4)k
? j
vi
5. ? F F F
v GM s G,Ms F
v
a (r ) = ? 2 r ? v (r )
r
r v
Rs ? j ?
ri = xi i + yi ? + zi k
v ?
ri rf rf = x f i + y f ? + z f k
? j
v v ?
rf ? ri ( x f ? xi )i + ( y f ? yi ) ? + ( z f ? zi )k
? j
r= v v =
?
rf ? ri 2 2
x f ? xi + y f ? yi + z f ? zi
2
6. ? F F F
v b b ?
a (v ) = ( ? v )v + ( ? g + v ) k
?
m m
g, b m F
v v
v (t ), r (t )
z
v ?
g v = vxi + v y ? + vz k
? j
v y v ?
g = ? gk
v
F(v)
mg ? j ?
F (v) = ?c1[v x i + v y ? + v z k ]
x
7. ? ?
? F 1
F F ? ? ? F ?
F F ? ?F ?F
? F (inertial frame of reference)
F F ? ? ? ?? F
F ? F F F ?
F F F
8. ? ?
? F 2
? ? ? F
? ?
v d v
¡Æ F = dt p
? F 3
F ? F? F12 ? ?
F? F21 ? ? F
F
v v
F12 = F21
9. ? ? ? F
? F(t)
? F F(r) F F F
? F(v) F F
v d v v
dv
¡Æ F = dt p = m dt = m&&
x
10. ?
F (t ) = m&&
x
dv F (t )
&& =
x =
dt m
F (t )
v(t ) = ¡Ò dt + C1
m
x(t ) = ¡Ò v(t )dt + C1t + C2
11. ? F( )
F ( x) = m&&
x
dv F ( x) dv dx
&& =
x = =
dt m dx dt
¡à m ¡Ò vdv = ¡Ò F ( x)dx
?Ek = ? ?E p
?Ep F? ?F F ?F F F
12. ?
F0 + F (v) = m&&
x
dv F0 + F (v) dv
&& =
x = ¡à m¡Ò = ¡Ò dt
dt m F0 + F (v)
? F ? ?
F
F (v) = ?c1v ? c2 v v
FF F? ?F ? F? ? ?
F F ? ?
13. ?
? ? F F F(v) ¦Á v
? ? F ? F (v) ¦Á v2
**? F F **
F(v)= -c1v
dv c
m¡Ò
dv
F0 + F (v) ¡Ò
= dt ¡Òv m= ? 1 ¡Ò dt
c1
c1 mv0 ? t
? t x(t ) = (1 ? e m
)
v(t ) = v0 e m
c1
14. ?
**? F F **
F(v)= -c1v
dv c1
mg ? c1v = m&&
x =g? v
dt m
dv
¡Ò c1 = ¡Ò dt
c1
mg ? t
g? v v(t ) = (1 ? e m
)
m c1
m/c1 F ? F m/c1= ¦Ó = F
mg/c1 F F ? F vT= mg/c1= F
15. ?
**? F F **
t
?
v(t ) = vT (1 ? e ¦Ó )
t= ¦Ó F v(t) =0.632 VT
? ? c1= 6¦Ð¦Çr F F
F ? ?
F ? F ¦Ó F ? ¦Ó
? F F ?? F
m M m
¦Ó= ¡à¦Ó R = ¡à¦Ó r = ? F F
6¦Ð¦Çr 6¦Ð¦ÇR 6¦Ð¦Çr
M/R3 = m/r3 = F ¦ÓR =
M R2 m R2
= 2 = 2 ¦Ór
R r r r
17. ? F( F F )
2
? ? d r
m 2 = ?mg?
j
dt
v
a = ? g?
j
v
v (t ) = vx i + v y ? = (v cos ¦È i )i + (v sin ¦È i ? gt ) ?
? j ? j
v ? + y (t ) ? = ( x 0 +v cos ¦È i t )i + ( y0 + v sin ¦È i t ? 1 gt 2 ) ?
r (t ) = x(t )i j ? j
2
v sin ¦È i
2 2
v 2 sin 2¦È i
ymax = R=x=
2g g
18. ? F( y
F )
v
? ? d 2r
m 2 = ?c1vv ? mg?
? j
dt
F(v)
mg
v c1 ? v c1
ax = ? vxi a y = (? v y ? g ) ?
j x
m m
c1 c1 c1
v ? t ? t mg ? t
v (t ) = v x i + v y ? = (v cos ¦È i e
? j m
)i + (v sin ¦È i e
? m
? (1 ? e m
)) ?
j
c1
mv cos ¦È i mv sin ¦È i m 2 g
c c
v ? 1t ? 1t mg ?
r (t ) = ( (1 ? e ))i
m ? + [( + 2 )(1 ? e ) ?
m
t] j
c1 c1 c1 c1
19. ? ?
v sin ¦È
?
v = cos ¦Èi + sin ¦È?
? ? j
R ?
v v cos ¦È
? ?
dv d
= (cos¦Èi + sin ¦È?)
? j
dt dt
?
dv d cos ¦È ? d sin ¦È ? ?
dv v
=( i+ j )¦Ø = (? sin ¦Èi + cos ¦È?)
? j
dt d¦È d¦È dt R
v.vc = 0
?? F v ¡Í vc
? ?
v
dv v2 v v v2 v2
a= ? + vc = aT + ac
v ? ¡à ac = ¡à Fc = m
dt R R R
20. ? ?
z
¦Ø v = ¦Ør sin ¦È
v
v v v
¦È r v = ¦Øxr
y
v v
v d v d v v d¦Ø v v dr
a = v = (¦Øxr ) = ( xr ) + (¦Øx )
dt dt dt dt
x
v v v v v v v
a = (¦Áxr ) + (¦Øxv ) = aT + ac
21. z
F
v v
W = ¡Ò F .dr rf
ri
y
x
v v
j ?
F = Fx i + Fy ? + Fz k
? ?
dr = dxi + dy? + dzk
? j
W = ¡Ò Fx dx (i .i ) + ¡Ò Fy dy ( ?. ? ) + ¡Ò Fz dz (k .k )
?? j j ??
v v v v
W = Wx + W y + W z F =m
dv
dx = v dt
dt
22. v xf
v v dvx
¡à ¡Ò Fx .dx = ¡Ò m vdt (i .i ) = m ¡Ò vdv = (?Ek ) x
??
dt v xi
W = Wx + Wy + Wz = (?Ek ) x + (?Ek ) y + (?Ek ) z = ?Ek
?
?
? ? F(t)
? ? F F(r) F F F
23. F=5N
37¡ã ?) ? 2 8
4kg
) F 1-4
X=0 Xi =1
v v
W = ¡Ò F .dr ? ? x dr=dx
8
W = ¡Ò ( F cos ¦È )dx(i .i )
?? 4
W = 5 x ¡Ò dx = 24 J
52
1
W = ?Ek = m(v8 ? v2 )
2 2
v(t ) = t t2
2 x(t ) = + 1
2
1
t ( x) = 2 x ? 2 v( x) = 2 x ? 2 W = ?Ek = x 4 x (14 ? 2) = 24 J
2
24. F ?
F=5t
37¡ã ?) ? 8/6 64/6
4kg
) F 1-4
Xi =0
v v
W = ¡Ò F .dr ? ? x dr=dx
64 / 6 4
t2
W = ¡Ò ( F cos ¦È )dx(i .i )
?? W = ¡Ò 4tdx = ¡Ò 4t (v(t ))dt = ¡Ò 4t ( )dt
8/ 6 2
2
1
W = ?Ek = m(v64 / 6 ? v8 / 6 )
2 2
2
25. ? F
F F F
v v
W = ¡Ò F (r ).dr W = ? ?E p
?Ek = ? ?E p
Ex m ? ? ? L F ? ?F ?
F? ? F F ? F F ?
F H ? F F
26. x
v v ?? ? F F F
Wmg = ¡Ò Fg .dr F ? F dr=ds mg
H
y f =H
v v ds
Wmg = ¡Ò Fg .ds = ¡Ò mg (ds cos(90 + ¦È )) = ¡Ò ? mg (ds sin ¦È ) = ? ¡Ò mgdy = ?mgH ¦È F
yi =0
mg
? F? ? F F mg
F.ds=F(ds cos¦È)=Fdx
F ? F F
? F ?