Dokumen tersebut membahas tentang gerak harmonik sederhana yang mencakup pengertian, jenis, contoh pada bandul dan pegas, hukum Hooke, periode dan frekuensi, simpangan, kecepatan, percepatan, serta energi pada gerak harmonik sederhana."
1 of 37
Downloaded 1,927 times
More Related Content
Ppt gerak harmonik sederhana
1. Romi Ragubta Kurniawan 41612010038
Tri Desi Rahayu W 41612010041
Ahmad Jefriansyah 41612010033
Deni Ariyanto
2. Pengertian GHS
Gerak harmonik sederhana adalah gerak bolak -
balik benda melalui suatu titik keseimbangan tertentu
dengan banyaknya getaran benda dalam setiap sekon
selalu konstan.
3. Jenis Gerak Harmonik Sederhana
Gerak Harmonik Sederhana dapat dibedakan menjadi
2 bagian, yaitu :
1. Gerak Harmonik Sederhana (GHS) Linier, misalnya
penghisap dalam silinder gas, gerak osilasi air raksa /
air dalam pipa U, gerak horizontal / vertikal dari
pegas, dan sebagainya.
2. Gerak Harmonik Sederhana (GHS) Angular, misalnya
gerak bandul/ bandul fisis, osilasi ayunan torsi, dan
sebagainya.
4. Gerak Harmonik pada Bandul
Ketika beban digantungkan
pada ayunan dan tidak
diberikan gaya, maka benda
akan dian di titik
keseimbangan B. Jika beban
ditarik ke titik A dan
dilepaskan, maka beban akan
bergerak ke B, C, lalu kembali
lagi ke A. Gerakan beban
akan terjadi berulang secara
periodik, dengan kata lain
beban pada ayunan di atas
melakukan gerak harmonik
sederhana.
5. GERAK HARMONIK PADA PEGAS
Pegas merupakan suatu benda yang
sering kita jumpai dalam berbagai
aplikasi, dari saklar hingga sistem
suspensi kendaraan.
Pegas amat berguna karena memiliki
kemampuan untuk direntang dan
ditekan
6. A mass is oscillating on a spring
Position in
equal time intervals:
7. Gerak vertikal pada pegas
Semua pegas memiliki
panjang alami sebagaimana
tampak pada gambar. Ketika
sebuah benda dihubungkan
ke ujung sebuah pegas,
maka pegas akan meregang
(bertambah panjang) sejauh
y. Pegas akan mencapai titik
kesetimbangan jika tidak
diberikan gaya luar (ditarik
atau digoyang)
8. Susunan Pegas
Konstanta pegas dapat berubah nilainya, apabila pegas
- pegas tersebut disusun menjadi rangkaian. Besar
konstanta total rangkaian pegas bergantung pada jenis
rangkaian pegas, yaitu rangkaian pegas seri atau
paralel
9. Seri / Deret
Gaya yang bekerja pada setiap pegas adalah sebesar F,
sehingga pegas akan mengalami pertambahan
panjang sebesar dan . Secara umum,
konstanta total pegas yang disusun seri dinyatakan
dengan persamaan :
dengan kn = konstanta
pegas ke - n.
10. Paralel
Jika rangkaian pegas ditarik dengan gaya sebesar F,
setiap pegas akan mengalami gaya tarik sebesar F1 dan
F2 , pertambahan panjang sebesar dan
. Secara umum, konstanta total pegas yang dirangkai
paralel dinyatakan dengan persamaan[5] :
ktotal = k1 + k2 + k3 +....+ kn, dengan kn = konstanta
pegas ke - n.
12. Contoh Soal
Dua buah pegas identik dengan kostanta masing-masing
sebesar 200 N/m disusun seri seperti terlihat pada gambar
berikut.
Beban m sebesar 2 kg digantungkan
pada ujung bawah pegas. Tentukan
periode sistem pegas tersebut!
Pembahasan
Gabungkan konstanta kedua pegas dengan susunan seri:
13. Contoh Soal
Dua buah pegas dengan Tentukan besar periode
kostanta sama besar dan frekuensi susunan
masing-masing sebesar tersebut, jika massa beban
150 N/m disusun secara m adalah 3 kilogram!
paralel seperti terlihat Pembahasan
pada gambar berikut. Periode susunan pegas
paralel, cari konstanta
gabungan terlebih dahulu:
14. Gaya Pemulih
Gaya pemulih dimiliki oleh setiap benda elastis yang
terkena gaya sehingga benda elastis tersebut berubah
bentuk. Gaya yang timbul pada benda elastis untuk
menarik kembali benda yang melekat padanya di sebut
gaya pemulih.
Gaya Pemulih pada Pegas
Pegas adalah salah satu contoh benda elastis. Oleh sifat
elastisnya ini, suatu pegas yang diberi gaya tekan atau gaya
regang akan kembali pada keadaan setimbangnya mula-
mula apabila gaya yang bekerja padanya dihilangkan. Gaya
pemulih pada pegas banyak dimanfaatkan dalam bidang
teknik dan kehidupan sehari- hari. Misalnya di dalam
shockbreaker dan springbed. Sebuah pegas berfungsi
meredam getaran saat roda kendaraan melewati jalan yang
tidak rata. Pegas - pegas yang tersusun di dalam springbed
akan memberikan kenyamanan saat orang tidur
15. Hukum Hooke
Jika gaya yang bekerja pada sebuah pegas dihilangkan,
pegas tersebut akan kembali pada keadaan semula.
Robert Hooke, ilmuwan berkebangsaan Inggris
menyimpulkan bahwa sifat elastis pegas tersebut ada
batasnya dan besar gaya pegas sebanding dengan
pertambahan panjang pegas. Dari penelitian yang
dilakukan, didapatkan bahwa besar gaya pegas
pemulih sebanding dengan pertambahan panjang
pegas. Secara matematis, dapat dituliskan sebagai:
, dengan k = tetapan pegas (N /
m)
Tanda (-) diberikan karena arah gaya pemulih pada
pegas berlawanan dengan arah gerak pegas tersebut.
16. Gaya Pemulih pada Gerak
Harmonik Sederhana
Gaya Pemulih pada Pegas
k = konstanta pegas (N/m)
y = simpangan (m)
Gaya Pemulih pada Ayunan Bandul Sederhana
m = massa benda (kg)
g = percepatan gravitasi (m/s2)
17. Periode dan Frekuensi
Periode adalah waktu yg diperlukan untuk melakukan
satu kali gerak bolak-balik.
Frekuensi adalah banyaknya getaran yang dilakukan
dalam waktu 1 detik.
Untuk pegas yg memiliki konstanta gaya k yg bergetar
karena adanya beban bermassa m, periode getarnya
adalah
19. Sedangkan pada ayunan bandul sederhana, jika
panjang tali adalah l, maka periodenya adalah
Keterangan :
f = frekuensi pegas (Hz)
T = periode pegas (sekon)
k = konstanta pegas (N/m)
m = massa (kg)
20. Contoh Soal
Sebuah bandul matematis memiliki panjang tali 64 cm dan
beban massa sebesar 200 gram. Tentukan periode getaran
bandul matematis tersebut, gunakan percepatan gravitasi
bumi g = 10 m/s2
Pembahasan
Periode ayunan sederhana:
Dari rumus periode getaran ayunan sederhana:
Sehingga:
Catatan:
Massa beban tidak mempengaruhi periode atau frekuensi
dari ayunan sederhana (bandul matematis, conis).
21. Contoh Soal
Sebuah beban bermassa 250 gram digantung dengan
sebuah pegas yang memiliki kontanta 100 N/m
kemudian disimpangkan hingga terjadi getaran
selaras. Tentukan periode getarannya!
Pembahasan
Diketahui:
k = 100 N/m
m = 250 g = 0,25 kg
T = .....
23. Simpangan Gerak Harmonik Sederhana
y = simpangan (m)
A = amplitudo (m)
= kecepatan sudut (rad/s)
f = frekuensi (Hz)
t = waktu tempuh (s)
Jika pada saat awal benda pada posisi 慮0, maka
Besar sudut (t+慮0) disebut sudut fase (慮), sehingga
disebut fase getaran dan
disebut beda fase.
24. Contoh Soal
Sebuah benda bergetar hingga membentuk suatu
gerak harmonis dengan persamaan
y = 0,04 sin 20 t
dengan y adalah simpangan dalam satuan meter, t
adalah waktu dalam satuan sekon. Tentukan beberapa
besaran dari persamaan getaran harmonis tersebut:
a) amplitudo
b) frekuensi
c) periode
d) simpangan maksimum
e) simpangan saat t = 1/60 sekon
f) simpangan saat sudut fasenya 45属
g) sudut fase saat simpangannya 0,02 meter
25. Pembahasan
Pola persamaan simpangan
gerak harmonik diatas adalah periode atau T
c)
y = A sin t T = 1/f
T = 1/10 = 0,1 s
= 2 f atau
2
= _____ d) simpangan maksimum atau
T ymaks
a) amplitudo atau A y = A sin t
y = 0,04 sin 20 t y = ymaks sin t
y = 0,04 sin 20 t
A = 0,04 meter
b) frekuensi atau f y = ymaks sin t
y = 0,04 sin 20 t
ymaks = 0,04 m
= 20
2f = 20 (Simpangan maksimum tidak
lain adalah amplitudo)
26. e) simpangan saat t = 1/60 sekon
y = 0,04 sin 20 t
y = 0,04 sin 20 (1/60)
y = 0,04 sin 1/3
y = 0,04 sin 60属 = 0,04 1/23 = 0,02 3 m
f) simpangan saat sudut fasenya 45属
y = A sin t
y = A sin 慮
dimana 慮 adalah sudut fase, 慮 = t
y = 0,04 sin 慮
y = 0,04 sin 45属 = 0,04 (0,52) = 0,022 m
g) sudut fase saat simpangannya 0,02 meter
y = 0,04 sin 20 t
y = 0,04 sin 慮
0,02 = 0,04 sin 慮
sin 慮 = 1/2
慮 = 30属
27. Contoh Soal 2
Diberikan sebuah persamaan simpangan gerak
harmonik
y = 0,04 sin 100 t
Tentukan:
a) persamaan kecepatan
b) kecepatan maksimum
c) persamaan percepatan
Pembahasan
a) persamaan kecepatan
Berikut berurutan rumus simpangan, kecepatan dan
percepatan:
28. Pembahasan sehingga:
a) persamaan kecepatan 僚 = A cos t
Berikut berurutan rumus 僚 = (100)(0,04) cos 100 t
simpangan, kecepatan dan 僚 = 4 cos 100 t
percepatan:
y = A sin t b) kecepatan maksimum
僚 = A cos t 僚 = A cos t
a = 2 A sin t 僚 = 僚maks cos t
僚maks = A
Ket:
y = simpangan (m) 僚 = 4 cos 100 t
僚 = kecepatan (m/s)
a = percepatan (m/s2) 僚maks = 4 m/s
Dari y = 0,04 sin 100 t c) persamaan percepatan
= 100 rad/s a = 2 A sin t
A = 0,04 m a = (100)2 (0,04) sin 100 t
a = 400 sin 100 t
29. KECEPATAN (v)
Jika simpangan menunjukkan posisi suatu
benda, maka kecepatan merupakan turunan
pertama dari posisi.
Hubungan kecepatan dengan simpangan
harmonik
30. Contoh Soal
Sebuah balok bermassa 0,5
kg dihubungkan dengan Periode getaran pegas :
sebuah pegas ringan dengan
konstanta 200 N/m. T = 2 (m/k)
Kemudian sistem tersebut T = 2 (0,5/200) = 2(1/400)
berosilasi harmonis. Jika = 2 (1/20) = 0,1 sekon
diketahui simpangan
maksimumnya adalah 3 cm,
maka kecepatan maksimum vmaks = A
adalah....
A. 0,1 m/s
B. 0,6 m/s 2
C. 1 m/s vmaks= ____ x A
D. 1,5 m/s
E. 2 m/s T
Pembahasan 2
Data :
m = 0,5 kg vmaks = ______ x (0,03) = 0,6
k = 200 N/m m/s
ymaks = A = 3 cm = 0,03 m 0,1
vmaks = ......
31. PERCEPATAN (a)
Jika simpangan menunjukkan posisi suatu
benda, maka kecepatan merupakan turunan
pertama dari kecepatan terhadap waktu.
Hubungan percepatan dengan simpangan
harmonik
Ket:
: kecepatan sudut (rad/s)
A : amplitudo (m)
a : percepatan
32. Energi pada Gerak Harmonik
Sederhanabenda yg melakukan gerak harmonik
Energi kinetik
sederhana, misalnya pegas, adalah
Karena k = m2, diperoleh
Energi potensial elastis yg tersimpan di dalam pegas
untuk setiap perpanjanganya adalah
33. Jika gesekan diabaikan, energi total atau energi
mekanik pada getaran pegas adalah
Keterangan:
Em : Energi Mekanik
Ep : Energi Potensial
Ek : Energi Kinetik
A : Ampitudo
m : Massa
: kecepatan sudut (rad/s)
34. Contoh Soal
Sebuah benda yang massanya 200 gram bergetar
harmonik dengan periode 0,2 sekon dan
amplitudo 2 cm. Tentukan :
a) besar energi kinetik saat simpangannya 1 cm
b) besar energi potensial saat simpangannya 1 cm
c) besar energi total
Pembahasan
35. Data dari soal:
m = 200 g = 0,2 kg
T = 0,2 s f = 5 Hz
A = 2 cm = 0,02 m = 2 x 10-2 m
a) besar energi kinetik saat simpangannya 1 cm
y = 1 cm = 0,01 m = 10-2 m
Ek = ....
b) besar energi potensial saat simpangannya 1 cm
c) besar energi total
36. Contoh Soal
Tentukan besarnya sudut fase saat :
a) energi kinetik benda yang bergetar sama dengan energi
potensialnya
b) energi kinetik benda yang bergetar sama dengan
sepertiga energi potensialnya
Pembahasan
a) energi kinetik benda yang bergetar sama dengan energi
potensialnya
Ek = Ep
1/2 m僚2 = 1/2 ky2
1/2 m ( A cos t)2 = 1/2 m2 (A sin t)2
1/2 m 2 A2 cos2 t = 1/2 m2 A2 sin2 t
cos2 t = sin2 t
cos t = sin t
tan t = 1
t = 45属
37. Energi kinetik benda yang bergetar sama dengan
energi potensialnya saat sudut fasenya 45属
b) energi kinetik benda yang bergetar sama
dengan sepertiga energi potensialnya
Ek = 1/3 Ep
1/2 m僚2 =1/3 x 1/2 ky2
1/2 m ( A cos t)2 = 1/3 x 1/2 m2 (A sin t)2
1/2 m 2 A2 cos2 t = 1/3 x 1/2 m2 A2 sin2 t
cos2 t = 1/3 sin2 t
cos t = 1/3 sin t
sin t /
cos t = 3
tan t = 3
t = 60属
Energi kinetik benda yang bergetar sama dengan
sepertiga energi potensialnya saat sudut fasenya
60属