際際滷

際際滷Share a Scribd company logo
N T畉P CU畛I K畛 
PH働NG PHP TNH 
I. S畛 g畉n 炭ng v sai s畛: 
Sai s畛 t動董ng 畛i:  a 
Sai s畛 tuy畛t 畛i:  a =  a . | a | 
S畛 ch畛 s畛 叩ng tin: k  log ( 2  a ) 
Sai s畛 lu担n lu担n lm tr嘆n l棚n (b畉t k畛 qu叩 b叩n hay kh担ng). 
y  f (x1, x2 ,..., xn ) 
f x x x x 
x 
 緒    
1 2 
n 
 
y n i 
  
i 1 
i 
, ,..., 
II. Ph動董ng ph叩p tr狸nh phi tuy畉n: 
1. Sai s畛 t畛ng qu叩t: 
| f '(x) |  m  0 | x* x | | f (x*) | 
m 
 o 
2. Ph動董ng ph叩p chia 担i: 
x x b a  
| * | | | 
 o [a,b] 
1 
 
2n 
3. Ph動董ng ph叩p l畉p 董n: 
[a,b] g (x) 
| g(x) |  q ; 0  q < 1 : h畛 s畛 co ( + x : l畉y a , - x : l畉y b ) 
 Sai s畛: 
qn 
1 | x1  x0 | (c担ng th畛c ti棚n nghi畛m) 
| xn  x |  q 
=> x叩c 畛nh s畛 l畉n l畉p n 
q 
1 | xn  xn-1 | (c担ng th畛c h畉u nghi畛m) 
| xn  x |  q 
 T鱈nh sai s畛 v nghi畛m: 
A = ( q ) B = ( x0 ) 
C = g (B) : 1 
A 
 A (C  B) : B = C 
 T鱈nh nghi畛m: 
( x0 ) = g (Ans) = 
 T鱈nh s畛 l畉n l畉p: 
n n q x x 
1 0 log 
縁     
log 
q 
 
4. Ph動董ng ph叩p Newton : 
 i畛u ki畛n: f (x)  0 tr棚n [a,b] 
f (x) f (x)> 0 
f (x) f (x) < 0 => x0 = a 
f (x) f (x) > 0 => x0 = b 
ATGroup Page 1
 T畛ng qu叩t: 
f x 
( ) 
1 
 
n 
 
n 
xn = xn-1  ' ( ) 
1 
f x 
| f '(x) |  m  0 
 T鱈nh nghi畛m: 
( x0 ) = Ans - ( ) 
f Ans 
f Ans 
'( ) 
= 
 T鱈nh sai s畛 v nghi畛m: 
A = ( x0 ) 
B = A - ( ) 
f A 
f A 
'( ) 
: f (B) 
m 
: A = B 
III. Ph動董ng ph叩p Jacobi v ph動董ng ph叩p Gauss: 
1. Ph動董ng ph叩p Jacobi: 
 Khi n = 3: 
A = ( x1 
0 ) B = ( x2 
0 ) C = ( x3 
0 ) 
D = 
1 
a ( b1  a12 B  a13 C ) : 
11 
E = 
1 
a ( b2  a21 A  a23 C ) : 
22 
F = 
1 
a ( b3  a31 A  a32 B ) : 
33 
A = D : B = E : C = F 
 Sai s畛: 
x m x T x m x m 
|| ( )  ||  || || || ( )  (  
1) || 
T 
1  
|| || 
m 
x m x T x x 
|| ( )  ||  || || || (1)  
(0) || 
T 
1  
|| || 
2. Ph動董ng ph叩p Gauss  Serdel: 
 Khi n = 3: 
B = ( x2 
0 ) C = ( x3 
0 ) 
D = 
1 
a ( b1  a12 B  a13 C ) : 
11 
E = 
1 
a ( b2  a21 D  a23 C ) : 
22 
F = 
1 
a ( b3  a31 D  a32 E ) : 
33 
B = E : C = F 
  a a 
 
 12  13 
 a a 
 
11 11 
 
  
 э   
  
  
э    
件  
T a 0 
a 
21 23 
22 22 
a a 
a a 
a a 
31 32 
33 33 
0 
0 
ATGroup Page 2
 Sai s畛: T = (D  L )-1 U . C担ng th畛c sai s畛 nh動 tr棚n. 
0 0 
a 
  
11 
21 22 
31 32 33 
      
D L a a 
  a a a 
 
 
=> (D-L)-1 (b畉m m叩y) 
IV. Nh但n t畛 LU: 
1 j 1 j u  a 1 ii l  
l a 
21 
21 
a 
11 
 
a a 
0 
0 0 
0 0 0 
    
      
  
  
U a 
a a a 
31 12 
32 
l a a a a 
a 
u a a a 
0 
u a a a 
  21 13 
a 
a 
l a 
a 
 a  a a 駈  
 件 a  a a 
 
a a a a u a a a a a 
    醐  
a 
b a a 
a 
 a  a a 
 
  
   
ATGroup Page 3 
11 
32 
21 12 
22 
11 
 
 
 
21 12 
22 22 
11 
23 23 
11 
  
31 
31 
11 
 
31 12 21 13 
32 23 
31 13 11 11 
33 33 
11 21 12 
22 
11 
 
u21 = u31 = u32 = 0 
V. Ph動董ng ph叩p Choleski: 
11 11 b  a 
2 
21 
22 22 
11 
  
21 
21 
11 
b a 
a 
 
31 
31 
11 
b a 
a 
 
31 21 
32 
11 
32 2 
21 
22 
11 
a 
b 
a a 
a 
 
  2 2 
33 33 31 32 b  a  b  b 12 13 23 b  b  b  0 
VI. Chu畉n vect董 v chu畉n ma tr畉n: 
||A||1 : max t畛ng c畛t 
||A|| : max t畛ng d嘆ng. 
k(A) = ||A|| ||A-1|| : s畛 i畛u ki畛n 
k cng g畉n 1 : cng 畛n 畛nh 
k cng xa 1 : cng kh担ng 畛n 畛nh. 
VII. a th畛c n畛i suy Largrange, Newton, Spline: 
1. a th畛c n畛i suy Largrange: 
 Bi to叩n: c畉n t狸m 1 a th畛c Ln(x) c坦 b畉c  n th畛a 
n = s畛 i畛m  1 
12 13 
23
 L畉p b畉ng: 
x x0 x1  xn Dk = t鱈ch theo hng 
x0 (x  x0) (x0  x1)  (x0  xn) D0 
x1 (x1  x0) (x  x1)  (x1  xn) D1 
      
xn (xn  x0) (xn  x1)  (x  xn) Dn 
w(x) 
n 
w(x) =  
x xk 
(  
) 
k 
0 
n 
y 
0 
Ln(x) = w(x)ワ 
k 
D 
k k 
 Sai s畛: 
Mn+1 = |max[f(n+1)(x)]| ; x[x0, xn] 
M n 
 
1 
 
|f(x)  Ln(x)|  ( n 
1)! 
|w(x)| 
2. a th畛c n畛i suy Newton: 
 T畛ng qu叩t: tr動畛ng h畛p c叩c i畛m n炭t c叩ch 畛u v畛i b動畛c h: 
yk = yk+1  yk 
pyk = p-1yk+1  p-1yk 
N(1) 
0 y 
n(x) = y0 + 1! 
2 y 
q + 2! 
0 
n y 
0 
n 
q(q  1) ++ ! 
q(q  1)(q  n + 1) ; 
x x0  
q = h 
(c担ng th畛c Newton ti畉n) 
N(2) 
1  n y 
n(x) = yn + 1! 
2 
  n y 
p + 2! 
2 
n y p(p+1)(p + n  1) ; 
p(p + 1) ++ ! 
0 
n 
x xn  
p = h 
(c担ng th畛c Newton l湛i) 
 C叩ch lm: l畉p b畉ng => N 
xk yk  2 
x0 y0 0= y1  y0 2 
0 = 1  0 
x1 y1 1= y2  y1  
    
 Ch炭 箪: v畛i c湛ng 1 b畉ng s畛: Ln(x) = N(1) 
n(x) = N(2) 
n(x) . Tuy nhi棚n, n畉u b畉ng 
s畛 c坦 tng th棚m hay gi畉m b畛t bi畉n, ta ch畛 c畉n th棚m ho畉c b畛t s担 h畉ng cu畛i 
trong Nn(x) thay v狸 lm l畉i t畛 畉u 畛i v畛i Ln(x). 
3. Spline b畉c 3 t畛 nhi棚n: 
 Tr動畛ng h畛p 3 s畛: 0 0 a  y 1 1 a  y 
ATGroup Page 4
c0  c2  0 
 y y   y y 
 
3 3 
  
2 1  
1 0 
2 1 1 0 
 c x x x  
x 
  
1 
x  
x 
2 0 
2 
 
b y y c x x 
( ) 
3 
  
  
1 0 1 1 0 
0 
x  
x 
1 0 
b y y c x x 
2 ( ) 
  
  
2 1 1 2 1 
1 
x  
x 
2 1 
3 
d c 
 
d  
c 
1 
1 
 0 
x x 
1 0 3( ) 
 
1 
x x 
3(  
) 
2 1 g0(x) = a0 + b0(x x0) + c0(x-x0)2 + d0(x-x0)3 x  [x0, x1] 
g1(x) = a1 + b1(x x1) + c1(x-x1)2 + d1(x-x1)3 x  [x1, x2] 
VIII. Ph動董ng ph叩p b狸nh ph動董ng b辿 nh畉t: 
1. T畛ng qu叩t: c畉n t狸m hm F(x) x畉p x畛 t畛t nh畉t b畉ng s畛 達 cho 
n 
F x  
 y 
2 ワ k k g(f) = ( ( ) ) min 
1 
k 
i畛m d畛ng: 
   ......... 
 
   ......... 
 
    ......... 
 
=> chuy畛n v畉 => gi畉i h畛 ph動董ng tr狸nh 3 畉n (A, B, C) 
C叩ch b畉m m叩y: 
V鱈 d畛: ta c畉n t鱈nh c叩c gi叩 tr畛: 4 
g 
Ag 
Bg 
C 
  
1 
n 
x 
k 
k 
n 
  2 
2 
1 
x sin 
y 
n 
k k 
k 
  
1 
x y 
k k 
k 
2 
  
1 
sin 
n 
x 
k 
k 
  
1 
y sin 
x 
n 
k k 
k 
A=A+X4:B=B+X2sinY:C=C+X2Y:D=D+(sinX)2:E=E+YsinX 
CALC 
- L畉n 畉u nh畉p A, B, C, D, E l 0 畛 kh畛i t畉o gi叩 tr畛. 
- Khi th畉y X? v Y? th狸 s畉 nh畉p xk v yk t動董ng 畛ng. 
- L畉n 2 b畛 qua khi 動畛c h畛i A? B? C? D? E? 
2. C叩ch s畛 d畛ng m叩y t鱈nh 畛i v畛i 1 s畛 hm: 
 B動畛c 1: ch畛n ch畉 畛 clear all 
 shift_9_3 畛i v畛i 570ES 
 shift_mode_3 畛i v畛i 570MS 
 B動畛c 2: 
 ch畛n ch畉 畛 STAT : mode 3 畛i v畛i 570ES 
 ch畛n ch畉 畛 REG : mode_mode_2 畛i v畛i 570MS 
ATGroup Page 5
 B動畛c 3: ch畛n d畉ng c畛a F(x) 
D畉ng F(x) Ph鱈m 畉n 
570ES 570MS 
F(x) = A+Bx 2 Lin 
F(x) = _+Cx2 = A +B + Cx2 3 Quad 
F(x) = ln(A + Bx) 4 Log 
F(x) = AeBx 5 Exp 
F(x) = A.Bx 6 kh担ng c坦 
F(x) =A.xB 7 Pwr 
F(x) = 
1 
A  Bx 
8 Inv 
 B動畛c 4: nh畉p b畉ng gi叩 tr畛 
 nh畉p vo b畉ng nh動 trong mn h狸nh 畛i v畛i 570ES 
 nh畉p xk , yk (d畉u , ) M+ cho 畉n khi h畉t b畉ng 畛i v畛i 570MS 
 B動畛c 5: t鱈nh gi叩 tr畛 A, B 
 shift_1_7_1(t鱈nh A)/2(t鱈nh B) 畛i v畛i 570ES 
 shift_2 ___1 (t鱈nh A) / 2 (t鱈nh B) 畛i v畛i 570MS 
IX. T鱈nh g畉n 炭ng 畉o hm: 
1. B畉ng 2 i畛m: 
 Sai ph但n ti畉n (x0, x0+h) 
f (x  h)  
f '(x) f (x ) 
0 0 h 
 
 Sai ph但n l湛i (x0-h, x0) 
f (x )  f (x  
f '(x) h) 
0 0 h 
 
 Sai s畛 : 
  M h 2 [ , ] 
2 
2 
M f x 
max ''( ) 
x  
a b 
 
2. B畉ng 3 i畛m: 
 畉o hm c畉p 1 
 Sai ph但n ti畉n (x0, x0+h, x0+2h) 
f x f x f x h f x h 
 '( )  
3 ( )  4 (  )  (  
2 ) 
0 0 0 2 
h 
 Sai ph但n h動畛ng t但m (x0-h, x0, x0+h) 
f x f x h f x 
(  2 )  
'( ) ( ) 
0 0 2 
h 
 
 Sai ph但n l湛i (x0-2h, x0-h, x0) 
f x f x f x h f x h 
( )  4 (  )  3 (  
'( ) 2 ) 
0 0 0 2 
h 
 
 Sai s畛 : 
2 
  M h 3 [ , ] 
36 
M f x 
max '''( ) 
x  
a b 
 
ATGroup Page 6
 畉o hm c畉p 2 
f ''(x) f (x  h)  2 f (x )  f (x  
h) 
0 0 0 
2 
h 
 
Sai s畛: 
2 
  M h 
4 
12 
(4) 
M f x 
max ( ) 
x a b 
 
4  
[ , ] 
X. C担ng th畛c h狸nh thang (x畉p x畛 t鱈ch ph但n): 
b 
 Bi to叩n c畉n x畉p x畛 t鱈ch ph但n   
I f (x)dx 
a 
 C叩ch gi畉i: chia o畉n [a.b] thnh n o畉n nh畛 b畉ng nhau v畛i b動畛c chia 
h b a 
 . Ta 
I h y y y y y        
  b  a M h 2 [ , ] 
M f x 
b 
I f (x)dx 
 
h b a 
 . Ta c坦 c担ng th畛c sau: 
I h y y y y y y y y             
  b  a M h max ( ) (4) 
y f x y 
' ( , ) 
  
     
2. C担ng th畛c Euler: 
 
ATGroup Page 7 
 
n 
c坦 c担ng th畛c sau: 
0 1 2 1 [ 2( ... ) ] 
2 n n 
 Sai s畛: 
2 
( ) 2 
12 
max ''( ) 
x  
a b 
 
XI. C担ng th畛c Simpson (x畉p x畛 t鱈ch ph但n): 
 Bi to叩n: c畉n x畉p x畛 t鱈ch ph但n   
a 
 C叩ch gi畉i: chia o畉n [a.b] thnh n = 2m o畉n nh畛 b畉ng nhau v畛i b動畛c chia 
m 
2 
0 1 3 2 1 2 4 2 2 2 [ 4( ... ) 2( ... ) ] 
3 m m m 
 Sai s畛: 
4 
( ) 4 
180 
M  
f x 
4 x [ a , b 
] XII. C担ng th畛c Euler v畛i h畛 ph動董ng tr狸nh vi ph但n x畉p x畛: 
1. Bi to叩n: t狸m yk v sai s畛. 
  
0 0 
, 
( ) 
x a b 
y x y 
1 ( , ) k k k k y y hf x y    
h b a 
n 
 
C坦 nghi畛m ch鱈nh x叩c l ( ) k y x .
Khi 坦 sai s畛 : | y(xk )  yk | 
B畉m m叩y: 
A = (x0) B = (y0) 
y(xkA)  B : B = B + h y(A, B) : A = A + h 
3. C担ng th畛c Euler c畉i ti畉n: 
1 
  1 1 2 
k k 2 y y k k     
 
h b a 
n 
 
  1 , k k k  hf x y   2 1 , k k k  hf x  h y  k 
C坦 nghi畛m ch鱈nh x叩c l ( ) k y x . 
Khi 坦 sai s畛 : | ( ) | k k y x  y 
B畉m m叩y nghi畛m v sai s畛: 
A = (x0) B = (y0) 
y(xkA)  B : C = h y(A, B) : D = h y(A+h, B+C) : B = B + 1 
2 
(C+D) : A = A + h 
x t f t x t g t x t h t 
''( ) ( ) '( ) ( ) ( ) ( ) 
    
      
Tr動畛ng h畛p:   
x t x x t x 
( ) '( ) ' 
0 0 0 0 
t a , 
b 
C叩ch gi畉i: 
x t x t hx t 
x t x t hx t 
( ) ( ) '( ) 
'( ) '( ) ''( ) 
   
   
0 0 
0 0 
XIII. C担ng th畛c Range  Kutta b畉c 4 v畛i ph動董ng tr狸nh vi ph但n c畉p 1 
C叩ch gi畉i: Tr動畛ng h畛p x畉p x畛 t畉i x1 = x0 + h ( n = 1) 
  
K hf x , 
y 
K hf x h y K 
 1 0 0 
          
  
, 
2 2 
, 
2 2 
, 
1 
2 0 0 
K hf x h y K 
K hf x h y K 
y x h y y K K K K 
    3    2 
0 0 
 
   
  
   
4 0 0 3 
( ) 1 2 2 
  
        
0 1 0 1 2 3 4 
6 
 
 
C叩ch b畉m m叩y: 
 T鱈nh K1: 
A = hf(X, Y) CALC X? (nh畉p x0) = Y? (nh畉p y0) = 
 T鱈nh K2: 
 thay A b畉ng B CALC X? (nh畉p x0+h/2) = Y? (nh畉p y0+A/2) = 
 T鱈nh K3: 
 thay B b畉ng C CALC X? (nh畉p x0+h/2) = Y? (nh畉p y0+B/2) = 
 T鱈nh K4: 
 thay C b畉ng D CALC X? (nh畉p x0+h) = Y? (nh畉p y0+C) = 
 T鱈nh y1: 
y0 + 1/6(A + 2B + 2C + D) = 
ATGroup Page 8
XIV. Bi to叩n bi棚n tuy畉n t鱈nh c畉p 2: 
1. Bi to叩n: t狸m hm y = y(x): 
   
p x y x q x y x r x y x f x 
( ) ; ( ) ; 
( ) ''( )  ( ) '( )  ( ) ( )  
( ) 
y a   y b   
a  x  
b 
2. C叩ch gi畉i: chia [a,b] thnh n o畉n 
 畉t y(x0) = y(a) = 留 = y0 
y(xn) = y(b) = 硫 = yn 
pk = p(xk); qk = q(xk); rk = r(xk); fk = f(xk) 
 C担ng th畛c: 
p q y r p y p q y f 
h h h h h   
  k  k       2 
k      k  k 
   2 1 2  
    2  
1 Gi畉i h畛 ph動董ng tr狸nh t狸m ra c叩c gi叩 tr畛 y1,..,yn-1 
k k k k k 
2 2 
XV. Ph動董ng tr狸nh Elliptic: 
1. Bi to叩n: t狸m hm u = u(x,y) x叩c 畛nh tr棚n mi畛n D 
a x b 
  
c y d 
   
  
th畛a: 
 
   
 
   
 
f ( x , y ) ( x , y ) 
D 
   
 
 
 
u 
2 
2 
u 
2 
2 
y 
x 
u a y y u b y y 
( , )   ( ); ( , )  
 
( ) 
1 2 
u x c x u x d x 
( , )  ( ); ( , )  
( ) 
 
 
  
1 2 
2. C叩ch gi畉i: chia 畛u o畉n [a,b] thnh n o畉n v畛i 
 
n b a 
x 
 
 
chia 畛u o畉n [c,d] thnh m o畉n v畛i 
 
m b a 
y 
 
 
 畉t uij l gi叩 tr畛 x畉p x畛 c畛a hm u(xi, yj): uij u(xi, yj) i  0,n;j  0,m 
 C担ng th畛c t畛ng qu叩t: 
u 2 u u u 2 
u u 
         
i j i j i j i j i j i j 
1, , 1, , 1 , , 1 
  h 2 h 
2 
x y 
 i  1, n  1; j  1, m 
 
1 
 Tr動畛ng h畛p x =  
y = h 
ij 
f 
2 
           
     
 Gi畉i h畛 t鱈nh 動畛c gi叩 tr畛 c畛a c叩c ui,j. 
4 
u u u u u h f 
i , j i 1, j i 1, j i , j 1 i , j 1 ij i 1, n 1; j 1, m 
1 
XVI. Ph動董ng tr狸nh Parabolic: 
1. Bi to叩n: c畉n x畉p x畛 hm u = u(x,t); x l bi畉n kh担ng gian; t l bi畉n th畛i gian x叩c 畛nh 
trong mi畛n D = {a  x  b, t > 0} th畛a 
ATGroup Page 9
  
 
2 
       u  
2 
u f ( x , t ) ( x , t ) 
D 
t x 
2 
u a t t u b t t t 
u x x x a b 
( , ) ( ); ( , ) ( ) 0 
( ,0) ( ) [ , ] 
     
  
 
1 2 
    
 
2. C叩ch gi畉i: chia 畛u [a,b] thnh n o畉n v畛i 
 
n b a 
x 
 
 
ch畛n b動畛c th畛i gian 0; t j t   t  j 
畉t uij = u(xi, tj); fij = f(xi, tj); 
2 
2 
 
t 
x 
 
 
 
 
 S董 畛 hi畛n: 
u u (1 2 ) 
u u f 
i , j 1 i 1, j i , j i 1, j t ij j 0,1, 2,.....; i 1, 2,..., n 
1 
             
    
 S董 畛 畉n: 
i j i j i j t ij i j u u u f u 
j i n 
1, , 1, , 1 (1 2 ) 
1, 2,...; 1, 2,..., 1 
              
    
 Gi畉i h畛 t鱈nh 動畛c gi叩 tr畛 c畛a c叩c ui,j 
XVII. C叩c 畉o hm c畉p cao (ph畛 l畛c): 
       
n n 
( 1) 
   
n a 
( ) 1 1 ! 
  
f ln 
ax b 
n 
n 
ax b 
  
 
  
  
n 
( ) 
1 1 n a n 
n 
! 1 
n 
f 
          
ax b ax b  
       
( ) sin  sin 
2 
f n ax an ax n 
  
( ) 1 1 1 1 2 ... 1 1 n k k n f ax b n a ax b k 
      駈     1 
 件      
   k k k k 
     
  
 醐    
ATGroup Page 10

More Related Content

Giai nhanh phuong phap tinh

  • 1. N T畉P CU畛I K畛 PH働NG PHP TNH I. S畛 g畉n 炭ng v sai s畛: Sai s畛 t動董ng 畛i: a Sai s畛 tuy畛t 畛i: a = a . | a | S畛 ch畛 s畛 叩ng tin: k log ( 2 a ) Sai s畛 lu担n lu担n lm tr嘆n l棚n (b畉t k畛 qu叩 b叩n hay kh担ng). y f (x1, x2 ,..., xn ) f x x x x x 緒 1 2 n y n i i 1 i , ,..., II. Ph動董ng ph叩p tr狸nh phi tuy畉n: 1. Sai s畛 t畛ng qu叩t: | f '(x) | m 0 | x* x | | f (x*) | m o 2. Ph動董ng ph叩p chia 担i: x x b a | * | | | o [a,b] 1 2n 3. Ph動董ng ph叩p l畉p 董n: [a,b] g (x) | g(x) | q ; 0 q < 1 : h畛 s畛 co ( + x : l畉y a , - x : l畉y b ) Sai s畛: qn 1 | x1 x0 | (c担ng th畛c ti棚n nghi畛m) | xn x | q => x叩c 畛nh s畛 l畉n l畉p n q 1 | xn xn-1 | (c担ng th畛c h畉u nghi畛m) | xn x | q T鱈nh sai s畛 v nghi畛m: A = ( q ) B = ( x0 ) C = g (B) : 1 A A (C B) : B = C T鱈nh nghi畛m: ( x0 ) = g (Ans) = T鱈nh s畛 l畉n l畉p: n n q x x 1 0 log 縁 log q 4. Ph動董ng ph叩p Newton : i畛u ki畛n: f (x) 0 tr棚n [a,b] f (x) f (x)> 0 f (x) f (x) < 0 => x0 = a f (x) f (x) > 0 => x0 = b ATGroup Page 1
  • 2. T畛ng qu叩t: f x ( ) 1 n n xn = xn-1 ' ( ) 1 f x | f '(x) | m 0 T鱈nh nghi畛m: ( x0 ) = Ans - ( ) f Ans f Ans '( ) = T鱈nh sai s畛 v nghi畛m: A = ( x0 ) B = A - ( ) f A f A '( ) : f (B) m : A = B III. Ph動董ng ph叩p Jacobi v ph動董ng ph叩p Gauss: 1. Ph動董ng ph叩p Jacobi: Khi n = 3: A = ( x1 0 ) B = ( x2 0 ) C = ( x3 0 ) D = 1 a ( b1 a12 B a13 C ) : 11 E = 1 a ( b2 a21 A a23 C ) : 22 F = 1 a ( b3 a31 A a32 B ) : 33 A = D : B = E : C = F Sai s畛: x m x T x m x m || ( ) || || || || ( ) ( 1) || T 1 || || m x m x T x x || ( ) || || || || (1) (0) || T 1 || || 2. Ph動董ng ph叩p Gauss Serdel: Khi n = 3: B = ( x2 0 ) C = ( x3 0 ) D = 1 a ( b1 a12 B a13 C ) : 11 E = 1 a ( b2 a21 D a23 C ) : 22 F = 1 a ( b3 a31 D a32 E ) : 33 B = E : C = F a a 12 13 a a 11 11 э э 件 T a 0 a 21 23 22 22 a a a a a a 31 32 33 33 0 0 ATGroup Page 2
  • 3. Sai s畛: T = (D L )-1 U . C担ng th畛c sai s畛 nh動 tr棚n. 0 0 a 11 21 22 31 32 33 D L a a a a a => (D-L)-1 (b畉m m叩y) IV. Nh但n t畛 LU: 1 j 1 j u a 1 ii l l a 21 21 a 11 a a 0 0 0 0 0 0 U a a a a 31 12 32 l a a a a a u a a a 0 u a a a 21 13 a a l a a a a a 駈 件 a a a a a a a u a a a a a 醐 a b a a a a a a ATGroup Page 3 11 32 21 12 22 11 21 12 22 22 11 23 23 11 31 31 11 31 12 21 13 32 23 31 13 11 11 33 33 11 21 12 22 11 u21 = u31 = u32 = 0 V. Ph動董ng ph叩p Choleski: 11 11 b a 2 21 22 22 11 21 21 11 b a a 31 31 11 b a a 31 21 32 11 32 2 21 22 11 a b a a a 2 2 33 33 31 32 b a b b 12 13 23 b b b 0 VI. Chu畉n vect董 v chu畉n ma tr畉n: ||A||1 : max t畛ng c畛t ||A|| : max t畛ng d嘆ng. k(A) = ||A|| ||A-1|| : s畛 i畛u ki畛n k cng g畉n 1 : cng 畛n 畛nh k cng xa 1 : cng kh担ng 畛n 畛nh. VII. a th畛c n畛i suy Largrange, Newton, Spline: 1. a th畛c n畛i suy Largrange: Bi to叩n: c畉n t狸m 1 a th畛c Ln(x) c坦 b畉c n th畛a n = s畛 i畛m 1 12 13 23
  • 4. L畉p b畉ng: x x0 x1 xn Dk = t鱈ch theo hng x0 (x x0) (x0 x1) (x0 xn) D0 x1 (x1 x0) (x x1) (x1 xn) D1 xn (xn x0) (xn x1) (x xn) Dn w(x) n w(x) = x xk ( ) k 0 n y 0 Ln(x) = w(x)ワ k D k k Sai s畛: Mn+1 = |max[f(n+1)(x)]| ; x[x0, xn] M n 1 |f(x) Ln(x)| ( n 1)! |w(x)| 2. a th畛c n畛i suy Newton: T畛ng qu叩t: tr動畛ng h畛p c叩c i畛m n炭t c叩ch 畛u v畛i b動畛c h: yk = yk+1 yk pyk = p-1yk+1 p-1yk N(1) 0 y n(x) = y0 + 1! 2 y q + 2! 0 n y 0 n q(q 1) ++ ! q(q 1)(q n + 1) ; x x0 q = h (c担ng th畛c Newton ti畉n) N(2) 1 n y n(x) = yn + 1! 2 n y p + 2! 2 n y p(p+1)(p + n 1) ; p(p + 1) ++ ! 0 n x xn p = h (c担ng th畛c Newton l湛i) C叩ch lm: l畉p b畉ng => N xk yk 2 x0 y0 0= y1 y0 2 0 = 1 0 x1 y1 1= y2 y1 Ch炭 箪: v畛i c湛ng 1 b畉ng s畛: Ln(x) = N(1) n(x) = N(2) n(x) . Tuy nhi棚n, n畉u b畉ng s畛 c坦 tng th棚m hay gi畉m b畛t bi畉n, ta ch畛 c畉n th棚m ho畉c b畛t s担 h畉ng cu畛i trong Nn(x) thay v狸 lm l畉i t畛 畉u 畛i v畛i Ln(x). 3. Spline b畉c 3 t畛 nhi棚n: Tr動畛ng h畛p 3 s畛: 0 0 a y 1 1 a y ATGroup Page 4
  • 5. c0 c2 0 y y y y 3 3 2 1 1 0 2 1 1 0 c x x x x 1 x x 2 0 2 b y y c x x ( ) 3 1 0 1 1 0 0 x x 1 0 b y y c x x 2 ( ) 2 1 1 2 1 1 x x 2 1 3 d c d c 1 1 0 x x 1 0 3( ) 1 x x 3( ) 2 1 g0(x) = a0 + b0(x x0) + c0(x-x0)2 + d0(x-x0)3 x [x0, x1] g1(x) = a1 + b1(x x1) + c1(x-x1)2 + d1(x-x1)3 x [x1, x2] VIII. Ph動董ng ph叩p b狸nh ph動董ng b辿 nh畉t: 1. T畛ng qu叩t: c畉n t狸m hm F(x) x畉p x畛 t畛t nh畉t b畉ng s畛 達 cho n F x y 2 ワ k k g(f) = ( ( ) ) min 1 k i畛m d畛ng: ......... ......... ......... => chuy畛n v畉 => gi畉i h畛 ph動董ng tr狸nh 3 畉n (A, B, C) C叩ch b畉m m叩y: V鱈 d畛: ta c畉n t鱈nh c叩c gi叩 tr畛: 4 g Ag Bg C 1 n x k k n 2 2 1 x sin y n k k k 1 x y k k k 2 1 sin n x k k 1 y sin x n k k k A=A+X4:B=B+X2sinY:C=C+X2Y:D=D+(sinX)2:E=E+YsinX CALC - L畉n 畉u nh畉p A, B, C, D, E l 0 畛 kh畛i t畉o gi叩 tr畛. - Khi th畉y X? v Y? th狸 s畉 nh畉p xk v yk t動董ng 畛ng. - L畉n 2 b畛 qua khi 動畛c h畛i A? B? C? D? E? 2. C叩ch s畛 d畛ng m叩y t鱈nh 畛i v畛i 1 s畛 hm: B動畛c 1: ch畛n ch畉 畛 clear all shift_9_3 畛i v畛i 570ES shift_mode_3 畛i v畛i 570MS B動畛c 2: ch畛n ch畉 畛 STAT : mode 3 畛i v畛i 570ES ch畛n ch畉 畛 REG : mode_mode_2 畛i v畛i 570MS ATGroup Page 5
  • 6. B動畛c 3: ch畛n d畉ng c畛a F(x) D畉ng F(x) Ph鱈m 畉n 570ES 570MS F(x) = A+Bx 2 Lin F(x) = _+Cx2 = A +B + Cx2 3 Quad F(x) = ln(A + Bx) 4 Log F(x) = AeBx 5 Exp F(x) = A.Bx 6 kh担ng c坦 F(x) =A.xB 7 Pwr F(x) = 1 A Bx 8 Inv B動畛c 4: nh畉p b畉ng gi叩 tr畛 nh畉p vo b畉ng nh動 trong mn h狸nh 畛i v畛i 570ES nh畉p xk , yk (d畉u , ) M+ cho 畉n khi h畉t b畉ng 畛i v畛i 570MS B動畛c 5: t鱈nh gi叩 tr畛 A, B shift_1_7_1(t鱈nh A)/2(t鱈nh B) 畛i v畛i 570ES shift_2 ___1 (t鱈nh A) / 2 (t鱈nh B) 畛i v畛i 570MS IX. T鱈nh g畉n 炭ng 畉o hm: 1. B畉ng 2 i畛m: Sai ph但n ti畉n (x0, x0+h) f (x h) f '(x) f (x ) 0 0 h Sai ph但n l湛i (x0-h, x0) f (x ) f (x f '(x) h) 0 0 h Sai s畛 : M h 2 [ , ] 2 2 M f x max ''( ) x a b 2. B畉ng 3 i畛m: 畉o hm c畉p 1 Sai ph但n ti畉n (x0, x0+h, x0+2h) f x f x f x h f x h '( ) 3 ( ) 4 ( ) ( 2 ) 0 0 0 2 h Sai ph但n h動畛ng t但m (x0-h, x0, x0+h) f x f x h f x ( 2 ) '( ) ( ) 0 0 2 h Sai ph但n l湛i (x0-2h, x0-h, x0) f x f x f x h f x h ( ) 4 ( ) 3 ( '( ) 2 ) 0 0 0 2 h Sai s畛 : 2 M h 3 [ , ] 36 M f x max '''( ) x a b ATGroup Page 6
  • 7. 畉o hm c畉p 2 f ''(x) f (x h) 2 f (x ) f (x h) 0 0 0 2 h Sai s畛: 2 M h 4 12 (4) M f x max ( ) x a b 4 [ , ] X. C担ng th畛c h狸nh thang (x畉p x畛 t鱈ch ph但n): b Bi to叩n c畉n x畉p x畛 t鱈ch ph但n I f (x)dx a C叩ch gi畉i: chia o畉n [a.b] thnh n o畉n nh畛 b畉ng nhau v畛i b動畛c chia h b a . Ta I h y y y y y b a M h 2 [ , ] M f x b I f (x)dx h b a . Ta c坦 c担ng th畛c sau: I h y y y y y y y y b a M h max ( ) (4) y f x y ' ( , ) 2. C担ng th畛c Euler: ATGroup Page 7 n c坦 c担ng th畛c sau: 0 1 2 1 [ 2( ... ) ] 2 n n Sai s畛: 2 ( ) 2 12 max ''( ) x a b XI. C担ng th畛c Simpson (x畉p x畛 t鱈ch ph但n): Bi to叩n: c畉n x畉p x畛 t鱈ch ph但n a C叩ch gi畉i: chia o畉n [a.b] thnh n = 2m o畉n nh畛 b畉ng nhau v畛i b動畛c chia m 2 0 1 3 2 1 2 4 2 2 2 [ 4( ... ) 2( ... ) ] 3 m m m Sai s畛: 4 ( ) 4 180 M f x 4 x [ a , b ] XII. C担ng th畛c Euler v畛i h畛 ph動董ng tr狸nh vi ph但n x畉p x畛: 1. Bi to叩n: t狸m yk v sai s畛. 0 0 , ( ) x a b y x y 1 ( , ) k k k k y y hf x y h b a n C坦 nghi畛m ch鱈nh x叩c l ( ) k y x .
  • 8. Khi 坦 sai s畛 : | y(xk ) yk | B畉m m叩y: A = (x0) B = (y0) y(xkA) B : B = B + h y(A, B) : A = A + h 3. C担ng th畛c Euler c畉i ti畉n: 1 1 1 2 k k 2 y y k k h b a n 1 , k k k hf x y 2 1 , k k k hf x h y k C坦 nghi畛m ch鱈nh x叩c l ( ) k y x . Khi 坦 sai s畛 : | ( ) | k k y x y B畉m m叩y nghi畛m v sai s畛: A = (x0) B = (y0) y(xkA) B : C = h y(A, B) : D = h y(A+h, B+C) : B = B + 1 2 (C+D) : A = A + h x t f t x t g t x t h t ''( ) ( ) '( ) ( ) ( ) ( ) Tr動畛ng h畛p: x t x x t x ( ) '( ) ' 0 0 0 0 t a , b C叩ch gi畉i: x t x t hx t x t x t hx t ( ) ( ) '( ) '( ) '( ) ''( ) 0 0 0 0 XIII. C担ng th畛c Range Kutta b畉c 4 v畛i ph動董ng tr狸nh vi ph但n c畉p 1 C叩ch gi畉i: Tr動畛ng h畛p x畉p x畛 t畉i x1 = x0 + h ( n = 1) K hf x , y K hf x h y K 1 0 0 , 2 2 , 2 2 , 1 2 0 0 K hf x h y K K hf x h y K y x h y y K K K K 3 2 0 0 4 0 0 3 ( ) 1 2 2 0 1 0 1 2 3 4 6 C叩ch b畉m m叩y: T鱈nh K1: A = hf(X, Y) CALC X? (nh畉p x0) = Y? (nh畉p y0) = T鱈nh K2: thay A b畉ng B CALC X? (nh畉p x0+h/2) = Y? (nh畉p y0+A/2) = T鱈nh K3: thay B b畉ng C CALC X? (nh畉p x0+h/2) = Y? (nh畉p y0+B/2) = T鱈nh K4: thay C b畉ng D CALC X? (nh畉p x0+h) = Y? (nh畉p y0+C) = T鱈nh y1: y0 + 1/6(A + 2B + 2C + D) = ATGroup Page 8
  • 9. XIV. Bi to叩n bi棚n tuy畉n t鱈nh c畉p 2: 1. Bi to叩n: t狸m hm y = y(x): p x y x q x y x r x y x f x ( ) ; ( ) ; ( ) ''( ) ( ) '( ) ( ) ( ) ( ) y a y b a x b 2. C叩ch gi畉i: chia [a,b] thnh n o畉n 畉t y(x0) = y(a) = 留 = y0 y(xn) = y(b) = 硫 = yn pk = p(xk); qk = q(xk); rk = r(xk); fk = f(xk) C担ng th畛c: p q y r p y p q y f h h h h h k k 2 k k k 2 1 2 2 1 Gi畉i h畛 ph動董ng tr狸nh t狸m ra c叩c gi叩 tr畛 y1,..,yn-1 k k k k k 2 2 XV. Ph動董ng tr狸nh Elliptic: 1. Bi to叩n: t狸m hm u = u(x,y) x叩c 畛nh tr棚n mi畛n D a x b c y d th畛a: f ( x , y ) ( x , y ) D u 2 2 u 2 2 y x u a y y u b y y ( , ) ( ); ( , ) ( ) 1 2 u x c x u x d x ( , ) ( ); ( , ) ( ) 1 2 2. C叩ch gi畉i: chia 畛u o畉n [a,b] thnh n o畉n v畛i n b a x chia 畛u o畉n [c,d] thnh m o畉n v畛i m b a y 畉t uij l gi叩 tr畛 x畉p x畛 c畛a hm u(xi, yj): uij u(xi, yj) i 0,n;j 0,m C担ng th畛c t畛ng qu叩t: u 2 u u u 2 u u i j i j i j i j i j i j 1, , 1, , 1 , , 1 h 2 h 2 x y i 1, n 1; j 1, m 1 Tr動畛ng h畛p x = y = h ij f 2 Gi畉i h畛 t鱈nh 動畛c gi叩 tr畛 c畛a c叩c ui,j. 4 u u u u u h f i , j i 1, j i 1, j i , j 1 i , j 1 ij i 1, n 1; j 1, m 1 XVI. Ph動董ng tr狸nh Parabolic: 1. Bi to叩n: c畉n x畉p x畛 hm u = u(x,t); x l bi畉n kh担ng gian; t l bi畉n th畛i gian x叩c 畛nh trong mi畛n D = {a x b, t > 0} th畛a ATGroup Page 9
  • 10. 2 u 2 u f ( x , t ) ( x , t ) D t x 2 u a t t u b t t t u x x x a b ( , ) ( ); ( , ) ( ) 0 ( ,0) ( ) [ , ] 1 2 2. C叩ch gi畉i: chia 畛u [a,b] thnh n o畉n v畛i n b a x ch畛n b動畛c th畛i gian 0; t j t t j 畉t uij = u(xi, tj); fij = f(xi, tj); 2 2 t x S董 畛 hi畛n: u u (1 2 ) u u f i , j 1 i 1, j i , j i 1, j t ij j 0,1, 2,.....; i 1, 2,..., n 1 S董 畛 畉n: i j i j i j t ij i j u u u f u j i n 1, , 1, , 1 (1 2 ) 1, 2,...; 1, 2,..., 1 Gi畉i h畛 t鱈nh 動畛c gi叩 tr畛 c畛a c叩c ui,j XVII. C叩c 畉o hm c畉p cao (ph畛 l畛c): n n ( 1) n a ( ) 1 1 ! f ln ax b n n ax b n ( ) 1 1 n a n n ! 1 n f ax b ax b ( ) sin sin 2 f n ax an ax n ( ) 1 1 1 1 2 ... 1 1 n k k n f ax b n a ax b k 駈 1 件 k k k k 醐 ATGroup Page 10