際際滷

際際滷Share a Scribd company logo
?????? ??????
1
?????? ????????? ????????? ??????
PREDICTIVE
ANALYTICS
"????????????? ??????? ????? ?????,??????? ??????? ????????"
)?????? ??????(
?????? ??????
wiesel@idc.ac.il
062-3881855
1
The Power to Predict Who Will
Click, Buy, Lie, or Die
??????????????-????????????????
???????? ????????? ???? ??????? ????????,
???? ?????? ???? ?????? ?????? ?????"?????? ???????"?
????????:
?????????? ???? ??????? ?????? ???? ?????? ?????? ??????
?????????? ??????? ??????????? ?????? ???? ?????? ?????? ??????
???????? ??????? ???????? ??????? ???? ?????? ?????? ??????
??????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ??????
2
?????? ??????
2
?????? ????????? ????????? ??????
?????????????????
? 1. Identifying people who don¨t pay their taxes.
? 2. Calculating the probability of having a stroke in the next 10 years.
? 3. Spotting which credit card transactions are fraudulent.
? 4. Selecting suspects in criminal cases.
? 5. Deciding which candidate to offer a job to.
? 6. Predicting how likely it is that a customer will become bankrupt.
? 7. Establishing which customers are likely to defect to a rival phone plan
? when their current contract is up.
? 8. Producing lists of people who would enjoy going on a date with you.
? 9. Determining what books, music and films you are likely to purchase next.
? 10. Predicting how much you are likely to spend at your local supermarket
? next week.
? 11. Forecasting life expectancy.
? 12. Estimating how much someone will spend on their credit card this year.
? 13. Inferring when someone is likely to be at home (so best time to call them).
3
???????? ?????????C????????? ??????
)???????,????????,???????(
4
???? ?????????? ????? ?????? ???????:
???????? ?????? ?????
????????? ?????
??????? ???????
??????? ?????? ???????
???????? ???????? ?????
???????? ????? ?????
?????'???????? ????????
???????...
?????? ??????
3
?????? ????????? ????????? ??????
Airbnb and Big data: ^Price Tips ̄
5
? Price Tips is a guide that tells hosts, for each day of the
year, how likely it is for them to get a booking at their
current price.
? Hosts can see what dates are likely to be booked at their
current price (green) and which aren¨t (red).
? When price is within 5% of the suggested price, the
chances are nearly four times to get a booking.
Linear Model
????????:?????????
???????? ????? ????? ???????
6
?????? ??????
4
?????? ????????? ????????? ??????
Credit scoring
??????? ???????????"???????"
?????? ????8?????????
7
????????? ???????-???????????????? ????? ????????? ??????
8
?????? ??????
5
?????? ????????? ????????? ??????
????????????????????
9
???????? ??????:
?????????? ???????? ????? ???????C500$
???????? ???????? ????? ???????C8,000$
?????? ???????? ?????? ??????1:16
???????? ??????? ???? ???????? ?????????<580
Regression Model
10
???????:
?????? ??????25,000??????? ??????? ????????
?????????:
?$1.2????????
???????:
?????? ?????? ???????? ??????75$
?????? ?????? ???????? ??????2$
???????:
????? ??????? ???? ???????? ????????5.1???????? ??????? ?????? ???? ???????? ????????,?????,
???????,?????? ????? ???? ???????
??????C?????? ????? ??????? ???? ?????? ?????
?????? ??????
6
?????? ????????? ????????? ??????
11
????????? ??????:
????? ????????600,000???????)1.2$????????(
???????predictive:
????? ????????100,000???????)200,000$(
????????? ?????? ??????
???????? ????????
Predictive Analytics
12
?Predictor variable:
????????
????????
??????
?????? ???? ???????
?...
?Behavioral data:
????? ???? ????? ??????
?????? ??????
7
?????? ????????? ????????? ??????
??????100,000???????????1,600?????
13
??????????????C???????????
14
?????? ??????
8
?????? ????????? ????????? ??????
????????????????
15
???????????????3?????????9-11
16
?????? ??????
9
?????? ????????? ????????? ??????
??????????????C???????????
17
????????
18
???????:
????? ?????? ??????500,000$
?????? ??????
10
?????? ????????? ????????? ??????
Regression Model
19
?????? ???????? ???????75$
???? ???????3?????? ????????:
???????????????????1-8
20

More Related Content

Predictive analytics

  • 1. ?????? ?????? 1 ?????? ????????? ????????? ?????? PREDICTIVE ANALYTICS "????????????? ??????? ????? ?????,??????? ??????? ????????" )?????? ??????( ?????? ?????? wiesel@idc.ac.il 062-3881855 1 The Power to Predict Who Will Click, Buy, Lie, or Die ??????????????-???????????????? ???????? ????????? ???? ??????? ????????, ???? ?????? ???? ?????? ?????? ?????"?????? ???????"? ????????: ?????????? ???? ??????? ?????? ???? ?????? ?????? ?????? ?????????? ??????? ??????????? ?????? ???? ?????? ?????? ?????? ???????? ??????? ???????? ??????? ???? ?????? ?????? ?????? ??????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? 2
  • 2. ?????? ?????? 2 ?????? ????????? ????????? ?????? ????????????????? ? 1. Identifying people who don¨t pay their taxes. ? 2. Calculating the probability of having a stroke in the next 10 years. ? 3. Spotting which credit card transactions are fraudulent. ? 4. Selecting suspects in criminal cases. ? 5. Deciding which candidate to offer a job to. ? 6. Predicting how likely it is that a customer will become bankrupt. ? 7. Establishing which customers are likely to defect to a rival phone plan ? when their current contract is up. ? 8. Producing lists of people who would enjoy going on a date with you. ? 9. Determining what books, music and films you are likely to purchase next. ? 10. Predicting how much you are likely to spend at your local supermarket ? next week. ? 11. Forecasting life expectancy. ? 12. Estimating how much someone will spend on their credit card this year. ? 13. Inferring when someone is likely to be at home (so best time to call them). 3 ???????? ?????????C????????? ?????? )???????,????????,???????( 4 ???? ?????????? ????? ?????? ???????: ???????? ?????? ????? ????????? ????? ??????? ??????? ??????? ?????? ??????? ???????? ???????? ????? ???????? ????? ????? ?????'???????? ???????? ???????...
  • 3. ?????? ?????? 3 ?????? ????????? ????????? ?????? Airbnb and Big data: ^Price Tips ̄ 5 ? Price Tips is a guide that tells hosts, for each day of the year, how likely it is for them to get a booking at their current price. ? Hosts can see what dates are likely to be booked at their current price (green) and which aren¨t (red). ? When price is within 5% of the suggested price, the chances are nearly four times to get a booking. Linear Model ????????:????????? ???????? ????? ????? ??????? 6
  • 4. ?????? ?????? 4 ?????? ????????? ????????? ?????? Credit scoring ??????? ???????????"???????" ?????? ????8????????? 7 ????????? ???????-???????????????? ????? ????????? ?????? 8
  • 5. ?????? ?????? 5 ?????? ????????? ????????? ?????? ???????????????????? 9 ???????? ??????: ?????????? ???????? ????? ???????C500$ ???????? ???????? ????? ???????C8,000$ ?????? ???????? ?????? ??????1:16 ???????? ??????? ???? ???????? ?????????<580 Regression Model 10 ???????: ?????? ??????25,000??????? ??????? ???????? ?????????: ?$1.2???????? ???????: ?????? ?????? ???????? ??????75$ ?????? ?????? ???????? ??????2$ ???????: ????? ??????? ???? ???????? ????????5.1???????? ??????? ?????? ???? ???????? ????????,?????, ???????,?????? ????? ???? ??????? ??????C?????? ????? ??????? ???? ?????? ?????
  • 6. ?????? ?????? 6 ?????? ????????? ????????? ?????? 11 ????????? ??????: ????? ????????600,000???????)1.2$????????( ???????predictive: ????? ????????100,000???????)200,000$( ????????? ?????? ?????? ???????? ???????? Predictive Analytics 12 ?Predictor variable: ???????? ???????? ?????? ?????? ???? ??????? ?... ?Behavioral data: ????? ???? ????? ??????
  • 7. ?????? ?????? 7 ?????? ????????? ????????? ?????? ??????100,000???????????1,600????? 13 ??????????????C??????????? 14
  • 8. ?????? ?????? 8 ?????? ????????? ????????? ?????? ???????????????? 15 ???????????????3?????????9-11 16
  • 9. ?????? ?????? 9 ?????? ????????? ????????? ?????? ??????????????C??????????? 17 ???????? 18 ???????: ????? ?????? ??????500,000$
  • 10. ?????? ?????? 10 ?????? ????????? ????????? ?????? Regression Model 19 ?????? ???????? ???????75$ ???? ???????3?????? ????????: ???????????????????1-8 20