際際滷

際際滷Share a Scribd company logo
ITVENSES - A SYMBOLIC
SYSTEM FOR ASPECT
BASED SENTIMENT
ANALYSIS
RODOLFO DELMONTE
DIPARTIMENTO DI STUDI LINGUISTICI E CULTURALI COMPARATI
UNIVERSIT CA FOSCARI
EMAIL: DELMONT@UNIVE.IT WEBSITE: RONDELMO.IT
1
OUTLINE
 Systems Architectures
 A Walkthrough Example
2
ITGETARUNS
3
ITVENSES
To develop the system I used 20% of the dataset and the remaining 80% for testing
4
WALKTHROUGH EXAMPLE
TAGGING AND LEMMATIZING
 opn(1240342904,[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],"M
anca il dentifricio in bagno.").
 1240342904_1 - ['Manca'-v,il-art,dentifricio-n,in-p,bagno-n,'.'-
punto],
 1240342904_1-[ i(1,Manca',v,mancare-[sems=intr,mfeats=kl3s]),
i(2,il,art,il-[sems=def,mfeats=ms]), i(3,dentifricio,n,dentifricio-
[mfeats=ms]), i(4,in,p,in), i(5,bagno,n,bagno-
[sems=com,mfeats=ms]), i(6,.',[punto],-)
5
WALKTHROUGH EXAMPLE
SYNTAX & SEMANTICS
 1240342904_1-[ ibar-[Manca'-v-sn], obj-[il-art-sn,dentifricio-n-sn],
obl-[in-p-sp,bagno-n-sn]]
 1240342904_1-[
 bagno-obl-1-[obl-[in-p-sp,bagno-n-sn]],
 dentifricio-obj-1-[obj-[il-art-sn,dentifricio-n-sn]],
 mancare-ibar-1- ibar-[Manca-v-sn]
 ]
6
WALKTHROUGH EXAMPLE
SYNTAX & SEMANTICS
pas(1240342904_1, mancare - [ refex(1240342904_1-1, v, 'Manca' -
mancare, [sems=intr,mfeats=kl3s], [activ,not_exten]),
refex(1240342904_1-3, n, dentifricio-dentifricio, [3,mas,sing],
[mfeats=ms], 1, subj / theme),
[ i(4,in,p,in,sp,[],1,-), refex(1240342904_1-5, n, bagno - bagno,
[def=indef,3,mas,sing], [
[act,agnt,artf,bld,cse,dyn,liqd,locat,med,obj,part], polsem = neut], 4,
obl / theme) ]
1 - [ lemma = mancare, disc_m = nil, polsem = negative, subcat =
[activ-not_exten], parola = Manca, change = gradual, view = external,
factive = factive, moodtense = presente] )
7
WALKTHROUGH EXAMPLE
FROM ITGETARUNS TO ITVENSES
 Try Match Aspect/s from refexs, i.e. Nouns, Verbs,
Adjectives - bagno aspect 2; mancare aspect 3
 Try Match Polarity/ies from refexs, i.e. Nouns,
Verbs, Adjectives - mancare marked as negative
 sievesall: recomposes aspects and polarities which
can be multiple for every sentence in a text
8
WALKTHROUGH EXAMPLE
FROM ITGETARUNS TO ITVENSES
 sievescheck: invertpols (invert polarities for the current aspect)
 sievescheck: focalizers (spots focalizers, minimizers, downtoners)
 sievescheck: checknegpriv (finds negation and its scope)
 sievescheck: syntax sieves (deletes current aspect assignment identifiers)
 Ind=2;Ind=3;Ind=6;Ind=7 - bagno Ind=2 (deleted)
 Ind=3 albergo;hotel;struttura & centro;centrale;a_due_passi
 Ind=2 camera;moquet;asciugamano;stanza;ambiente;bagno;letto &
spazioso;comodo & + pulito
 Ind=7 strada;piazza & rumoroso
 Ind=7 arrivare;raggiungere & difficile;distante;scomodo;scarso
9
WALKTHROUGH EXAMPLE
 collapseall: recovers all clause level analysis of the current
sentence both at propositional and at subjective/factivity level and
collects them together
 now each evaluation term is made up by a text index - a set of
semantic propositional level representations for that sentence - one
aspect assignment - one associated polarity assignment, made up
by a positive and a negative slot
10
WALKTHROUGH EXAMPLE
AUGMENTED PREDICATE ARGUMENT STR.
 1240342904-[
 1240342904_1-mancare(neg,statement,dentifricio-dentifricio-3,
bagno-bagno-5)]-
 [mancare]- Aspect seeds
 [[],[Manca]]- Polarities: Positive+Negative
 3] Aspect Identifier
11
WALKTHROUGH EXAMPLE
 evalothers: evaluates sentences marked with aspect n.8 and
associates semantic representations
 reduceevals: collapses evaluation terms for the same sentence
with identical values
 othersieve: sieves and modifies aspect value using combinations
of aspect assignments present at text level; fires preferences for
combined aspect values which modify one or more value
12
WALKTHROUGH EXAMPLE
 comparevals: sieves and modifies those texts declaring tutto bene
or the opposite with an all aspects positive/negative marking
 checks for texts made up by a couple of aspects each evaluated to
the contrary
 checks for texts which have a semantic propositional level analysis
as nonfactual or as negated and marks them with negative polarity -
if + double negations
13
WALKTHROUGH EXAMPLE
 Outputs the resulting 0/1 string
 1240342904-[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]-true
www.rondelmo.it
14
PERFORMANCE OF ITVENSES
15
Delayed Results for Test Set After Ablation Experiment
PERFORMANCE OF ITVENSES
16
Results for Development Set
PERFORMANCE OF ITVENSES
17
Published Results for Test Set
ITVENSES FOR IRONITA
TASK A: Binary classification
TASK B: Multiclass classification
18

More Related Content

Present eval

  • 1. ITVENSES - A SYMBOLIC SYSTEM FOR ASPECT BASED SENTIMENT ANALYSIS RODOLFO DELMONTE DIPARTIMENTO DI STUDI LINGUISTICI E CULTURALI COMPARATI UNIVERSIT CA FOSCARI EMAIL: DELMONT@UNIVE.IT WEBSITE: RONDELMO.IT 1
  • 2. OUTLINE Systems Architectures A Walkthrough Example 2
  • 4. ITVENSES To develop the system I used 20% of the dataset and the remaining 80% for testing 4
  • 5. WALKTHROUGH EXAMPLE TAGGING AND LEMMATIZING opn(1240342904,[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],"M anca il dentifricio in bagno."). 1240342904_1 - ['Manca'-v,il-art,dentifricio-n,in-p,bagno-n,'.'- punto], 1240342904_1-[ i(1,Manca',v,mancare-[sems=intr,mfeats=kl3s]), i(2,il,art,il-[sems=def,mfeats=ms]), i(3,dentifricio,n,dentifricio- [mfeats=ms]), i(4,in,p,in), i(5,bagno,n,bagno- [sems=com,mfeats=ms]), i(6,.',[punto],-) 5
  • 6. WALKTHROUGH EXAMPLE SYNTAX & SEMANTICS 1240342904_1-[ ibar-[Manca'-v-sn], obj-[il-art-sn,dentifricio-n-sn], obl-[in-p-sp,bagno-n-sn]] 1240342904_1-[ bagno-obl-1-[obl-[in-p-sp,bagno-n-sn]], dentifricio-obj-1-[obj-[il-art-sn,dentifricio-n-sn]], mancare-ibar-1- ibar-[Manca-v-sn] ] 6
  • 7. WALKTHROUGH EXAMPLE SYNTAX & SEMANTICS pas(1240342904_1, mancare - [ refex(1240342904_1-1, v, 'Manca' - mancare, [sems=intr,mfeats=kl3s], [activ,not_exten]), refex(1240342904_1-3, n, dentifricio-dentifricio, [3,mas,sing], [mfeats=ms], 1, subj / theme), [ i(4,in,p,in,sp,[],1,-), refex(1240342904_1-5, n, bagno - bagno, [def=indef,3,mas,sing], [ [act,agnt,artf,bld,cse,dyn,liqd,locat,med,obj,part], polsem = neut], 4, obl / theme) ] 1 - [ lemma = mancare, disc_m = nil, polsem = negative, subcat = [activ-not_exten], parola = Manca, change = gradual, view = external, factive = factive, moodtense = presente] ) 7
  • 8. WALKTHROUGH EXAMPLE FROM ITGETARUNS TO ITVENSES Try Match Aspect/s from refexs, i.e. Nouns, Verbs, Adjectives - bagno aspect 2; mancare aspect 3 Try Match Polarity/ies from refexs, i.e. Nouns, Verbs, Adjectives - mancare marked as negative sievesall: recomposes aspects and polarities which can be multiple for every sentence in a text 8
  • 9. WALKTHROUGH EXAMPLE FROM ITGETARUNS TO ITVENSES sievescheck: invertpols (invert polarities for the current aspect) sievescheck: focalizers (spots focalizers, minimizers, downtoners) sievescheck: checknegpriv (finds negation and its scope) sievescheck: syntax sieves (deletes current aspect assignment identifiers) Ind=2;Ind=3;Ind=6;Ind=7 - bagno Ind=2 (deleted) Ind=3 albergo;hotel;struttura & centro;centrale;a_due_passi Ind=2 camera;moquet;asciugamano;stanza;ambiente;bagno;letto & spazioso;comodo & + pulito Ind=7 strada;piazza & rumoroso Ind=7 arrivare;raggiungere & difficile;distante;scomodo;scarso 9
  • 10. WALKTHROUGH EXAMPLE collapseall: recovers all clause level analysis of the current sentence both at propositional and at subjective/factivity level and collects them together now each evaluation term is made up by a text index - a set of semantic propositional level representations for that sentence - one aspect assignment - one associated polarity assignment, made up by a positive and a negative slot 10
  • 11. WALKTHROUGH EXAMPLE AUGMENTED PREDICATE ARGUMENT STR. 1240342904-[ 1240342904_1-mancare(neg,statement,dentifricio-dentifricio-3, bagno-bagno-5)]- [mancare]- Aspect seeds [[],[Manca]]- Polarities: Positive+Negative 3] Aspect Identifier 11
  • 12. WALKTHROUGH EXAMPLE evalothers: evaluates sentences marked with aspect n.8 and associates semantic representations reduceevals: collapses evaluation terms for the same sentence with identical values othersieve: sieves and modifies aspect value using combinations of aspect assignments present at text level; fires preferences for combined aspect values which modify one or more value 12
  • 13. WALKTHROUGH EXAMPLE comparevals: sieves and modifies those texts declaring tutto bene or the opposite with an all aspects positive/negative marking checks for texts made up by a couple of aspects each evaluated to the contrary checks for texts which have a semantic propositional level analysis as nonfactual or as negated and marks them with negative polarity - if + double negations 13
  • 14. WALKTHROUGH EXAMPLE Outputs the resulting 0/1 string 1240342904-[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]-true www.rondelmo.it 14
  • 15. PERFORMANCE OF ITVENSES 15 Delayed Results for Test Set After Ablation Experiment
  • 16. PERFORMANCE OF ITVENSES 16 Results for Development Set
  • 17. PERFORMANCE OF ITVENSES 17 Published Results for Test Set
  • 18. ITVENSES FOR IRONITA TASK A: Binary classification TASK B: Multiclass classification 18