A 6-year-old patient was fatally injured at Westchester Medical Center when an oxygen canister was pulled into the MRI scanner by the magnetic field, leading to $22,000 in fines. The Alfred Hospital in Australia also faced a review of safety procedures following the death of a man whose pacemaker malfunctioned during an MRI scan. Additionally, a $200,000 damage incident occurred at a medical center in Seattle when a metal floor buffer was pulled into the MRI machine. MRI safety procedures aim to prevent such accidents by ensuring no ferromagnetic objects enter the scanner room and that devices are MRI conditional. Unique hazards of MRI include the always-on magnetic fields, projectile effect of metal objects, and risks of device
- MRI uses strong magnets and radio waves to produce detailed images of the inside of the body without using ionizing radiation. It was developed from the 1930s discovery of nuclear magnetic resonance and research using it to study chemical compounds. The first MRI scanner that could image the whole human body was built in the 1970s. Modern MRI is able to produce high quality images of soft tissues and organs throughout the body to assist in medical diagnosis. Precautions must be taken regarding any metal objects before undergoing an MRI scan.
An MRI scanner uses powerful superconducting magnets cooled with liquid helium to generate a strong magnetic field. When hydrogen atoms in the body are subjected to radio waves inside this magnetic field, they emit signals that are used to construct detailed images of tissues and anatomical structures. Cryocoolers are used to cool the radiation shields and recondense the helium in the superconducting magnet system, helping to maintain the low temperatures needed for superconductivity. While MRI provides detailed 3D images without ionizing radiation, there are some safety risks from the strong magnetic field and certain implants may cause artifacts or not be compatible. Continued technological advances aim to make MRI systems even more powerful, affordable and widely available for medical and research
Wireless medical telemetry uses radio frequencies to monitor patient physiological parameters from a transmitter worn by the patient to a central monitoring station, allowing freedom of movement. It has advantages like faster diagnosis and reduced hospital visits. However, signal interference from other wireless devices can be an issue. Standards like WMTS and protocols like Bluetooth address this by establishing exclusive frequency bands for medical use and incorporating security features. New wireless technologies continue to enhance patient mobility and provider access to information.
MRI safety is crucial due to the extremely powerful magnet that is always on. Ferromagnetic objects can become dangerous missiles and people have died when unsafe objects enter the room. Strict screening and protocols are necessary to ensure no contraindicated implants, metals, or equipment enter the high magnetic field, as these can cause burns, projectiles, or incorrect scanning. Proper training, checklists, controlled access areas and awareness of one's surroundings are vital to minimize risk in the MRI environment.
MRI uses strong magnetic fields and radio waves to produce detailed images of the inside of the body. It has advanced beyond a tomographic imaging technique to a volume imaging technique. The first MRI experiment was conducted in 1946. Important developments included Raymond Damadian constructing the first MRI scanner in 1977 and Peter Mansfield developing echo planar imaging. MRI works by aligning hydrogen protons in water and fat using magnetism and radio waves, and using magnetic field gradients to spatially encode the signal from tissues to form images. It is useful for diagnosing conditions, injuries and evaluating masses without using ionizing radiation.
This document defines a linear accelerator and describes its components and generations. It begins by defining a linear accelerator as a machine that uses electromagnetic waves to accelerate charged particles like electrons to high energies. It then describes the three generations of linear accelerators from early bulky models to current compact highly reliable designs with improved treatment capabilities. The document concludes by describing the major components of a linear accelerator including the modulator cabinet, console, drive stand, klystron, waveguide and others.
Medical instrumentation- patient monitoring systems Poornima D
油
Patient monitoring systems continuously measure important physiological parameters of critically ill patients. They display this medical data to care providers to help detect medical issues. A typical patient monitoring system uses sensors to measure values like ECG, heart rate, blood pressure, temperature, and respiration rate. It then sends this data to a bedside monitor or central monitoring station for clinicians to view. Modern systems use microcomputers and touchscreens instead of traditional devices. They organize data to improve patient care, set alarms, and help ensure patients receive better treatment with fewer medical staff.
This document discusses MRI safety, providing a brief history and overview of MRI components. It outlines the different MRI safety zones and the use of Faraday cages for shielding. Major accidents that have occurred are described, such as one caused by a metal oxygen tank. The document stresses preventing accidents through patient screening, warning signs, and informed consent regarding any metallic implants.
This document discusses MEMS (Micro Electro-Mechanical Systems) and CZT (Cadmium Zinc Telluride) detectors. It describes MEMS as miniaturized mechanical and electro-mechanical devices made using microfabrication techniques. The components of MEMS include sensors, actuators, microelectronics. Common materials used are silicon, polymers and metals. Basic MEMS fabrication processes include deposition, lithography and etching. CZT detectors directly convert x-ray and gamma-ray photons into electrons at room temperature and are used in medical, security and industrial applications to detect radiation.
This document summarizes a lecture on radar clutter. It discusses different types of clutter sources including ground, sea, rain, and birds. It provides details on the attributes of rain clutter such as how it is affected by wavelength and circular polarization. Graphs are presented showing reflectivity of rain and its Doppler spectrum. Bird clutter properties around radar cross-section, velocity, and density are also covered. The document aims to explain the impact of various clutter sources on radar performance.
This document provides an overview of MRI safety topics, including:
1. It describes the physics of MRI including static magnetic fields, electromagnetic fields, and induced currents.
2. It outlines several safety issues related to the static magnetic field including biological effects, mechanical effects from projectile objects, and risks of foreign materials in the body.
3. It discusses safety protocols including restricted access zones, signage, and screening forms to manage risks from the magnetic field and ensure safe scanning.
A pacemaker is a small device implanted in the chest or abdomen to control abnormal heart rhythms called arrhythmias by using electrical pulses to prompt the heart to beat at a normal rate. Pacemakers are used to treat slow or irregular heartbeats that can cause symptoms like fatigue, shortness of breath, or fainting. The pacemaker consists of a battery, generator, and wires that connect to the heart and monitor its electrical activity, sending pulses to regulate the heartbeat when needed.
Echo planar imaging (EPI) is the method of rapid magnetic resonance imaging (MRI), overcoming one of the significant disadvantage of MRI concerning with slow imaging time. However, EPI-MRI imaging comes with it's own unique imaging artifacts.
ECG machines -Operation and Maintenanceshashi sinha
油
ECG (or Electrocardiographs) machines are used to monitor the electrical activity of the heart and display it on a small screen or record it on a piece of paper. The recordings are used to diagnose the condition of the heart muscle and its nerve system.
Physical And Physiological Basis Of Magnetic Relaxation, by AALIAAALIA ABDULLAH
油
This document discusses the physical and physiological basis of magnetic relaxation, image contrast, and noise in MRI. It explains that MRI works by manipulating the relaxation of excited hydrogen protons back to equilibrium, which provides contrast between tissues with different relaxation times T1 and T2. T1 relaxation recovers the longitudinal magnetization along the magnetic field, while T2 relaxation involves signal decay from spin-spin interactions. MRI sequences exploit variations in T1 and T2 among tissues to generate image contrast and visualize anatomical and physiological features. However, noise from various physical and physiological sources is an inherent challenge that must be addressed.
MR safety concerns arise from static magnetic fields, gradient magnetic fields, and RF magnetic fields. Static magnetic fields can affect implanted medical devices, metallic objects, and physiology. Gradient magnetic fields can induce currents in tissues and stimulate nerves. RF fields can induce currents and cause tissue heating. Strict safety guidelines limit magnetic field exposure and RF energy deposition to protect patients and staff. Pregnant patients and employees require special precautions due to unknown effects of magnetic fields on fetuses.
1. The document discusses safety issues related to magnetic resonance (MR) environments, defining electromagnetic fields and associated biological effects and risks.
2. It outlines definitions from the ASTM standard for marking devices brought into the MR environment and summarizes biological and mechanical effects of static magnetic fields over 1.5 Tesla.
3. Precautions are discussed for implants, pregnancy, projectile risks, and effects on ECG tracings along with safety checklists for patient preparation and equipment.
Digital radiography (DR) uses digital detectors and imaging plates to capture x-rays and produce digital images. There are two main types: direct and indirect conversion. Direct conversion detectors like selenium plates directly convert x-rays to electrical signals. Indirect detectors like CCDs and flat panel detectors use scintillators to first convert x-rays to light, which is then converted to electrical signals. DR provides advantages over film like fully digital storage and transmission of images. Early DR systems included selenium drum detectors in the 1970s-80s and CCD slot scanning in the 1990s, while flat panel detectors since the mid-1990s have provided the best image quality and productivity.
CT perfusion of the head uses x-rays to show which areas of the brain are adequately supplied with blood. It provides detailed information about blood flow and is useful for evaluating conditions like stroke, brain vessel diseases, and tumors. The procedure involves injecting contrast dye and taking multiple scans as it circulates through the brain. It is fast, painless, and can help diagnose conditions and guide treatment.
MRI uses strong magnetic fields and radio waves to produce detailed images of the inside of the body. Protons in the body align with the magnetic field, and radio waves excite the protons causing them to emit signals. The signals are detected by coils and used to construct an image on a computer. Different tissues can be distinguished based on proton density and relaxation times after excitation. Gradient fields are used to localize the source of the signals within the body.
MagnetoenCephaloGraphy油(MEG) is a technique for mapping brain activity by recording油magnetic fields油produced by electrical currents occurring naturally in the油brain, using very sensitive油magnetometers.
This lecture discusses the development of nuclear imaging techniques. It begins with an overview of nuclear imaging and its use of gamma rays and x-rays to form images. The earliest device was the rectilinear scanner, which used a single moving detector. The Anger gamma camera was a significant improvement as it allowed simultaneous detection over a large area. Modern gamma cameras use NaI(Tl) scintillator crystals coupled to PMTs to convert gamma ray interactions to light and then electrical signals. Digital processing is used to determine interaction locations and form images. Collimators are used to selectively detect gamma rays from a desired direction.
The document discusses several safety issues related to MRI, including:
- The strong magnetic fields can attract ferromagnetic objects, posing risks. Patients must remove all metal before an MRI.
- Implants like aneurysm clips or pacemakers may heat up or malfunction in the magnetic field, causing injury.
- Radiofrequency fields used in MRI can cause tissue heating if safety limits are exceeded.
- Loud noise from gradients requires hearing protection. Contrast agents rarely cause reactions but may in some patients.
Medical instrumentation- patient monitoring systems Poornima D
油
Patient monitoring systems continuously measure important physiological parameters of critically ill patients. They display this medical data to care providers to help detect medical issues. A typical patient monitoring system uses sensors to measure values like ECG, heart rate, blood pressure, temperature, and respiration rate. It then sends this data to a bedside monitor or central monitoring station for clinicians to view. Modern systems use microcomputers and touchscreens instead of traditional devices. They organize data to improve patient care, set alarms, and help ensure patients receive better treatment with fewer medical staff.
This document discusses MRI safety, providing a brief history and overview of MRI components. It outlines the different MRI safety zones and the use of Faraday cages for shielding. Major accidents that have occurred are described, such as one caused by a metal oxygen tank. The document stresses preventing accidents through patient screening, warning signs, and informed consent regarding any metallic implants.
This document discusses MEMS (Micro Electro-Mechanical Systems) and CZT (Cadmium Zinc Telluride) detectors. It describes MEMS as miniaturized mechanical and electro-mechanical devices made using microfabrication techniques. The components of MEMS include sensors, actuators, microelectronics. Common materials used are silicon, polymers and metals. Basic MEMS fabrication processes include deposition, lithography and etching. CZT detectors directly convert x-ray and gamma-ray photons into electrons at room temperature and are used in medical, security and industrial applications to detect radiation.
This document summarizes a lecture on radar clutter. It discusses different types of clutter sources including ground, sea, rain, and birds. It provides details on the attributes of rain clutter such as how it is affected by wavelength and circular polarization. Graphs are presented showing reflectivity of rain and its Doppler spectrum. Bird clutter properties around radar cross-section, velocity, and density are also covered. The document aims to explain the impact of various clutter sources on radar performance.
This document provides an overview of MRI safety topics, including:
1. It describes the physics of MRI including static magnetic fields, electromagnetic fields, and induced currents.
2. It outlines several safety issues related to the static magnetic field including biological effects, mechanical effects from projectile objects, and risks of foreign materials in the body.
3. It discusses safety protocols including restricted access zones, signage, and screening forms to manage risks from the magnetic field and ensure safe scanning.
A pacemaker is a small device implanted in the chest or abdomen to control abnormal heart rhythms called arrhythmias by using electrical pulses to prompt the heart to beat at a normal rate. Pacemakers are used to treat slow or irregular heartbeats that can cause symptoms like fatigue, shortness of breath, or fainting. The pacemaker consists of a battery, generator, and wires that connect to the heart and monitor its electrical activity, sending pulses to regulate the heartbeat when needed.
Echo planar imaging (EPI) is the method of rapid magnetic resonance imaging (MRI), overcoming one of the significant disadvantage of MRI concerning with slow imaging time. However, EPI-MRI imaging comes with it's own unique imaging artifacts.
ECG machines -Operation and Maintenanceshashi sinha
油
ECG (or Electrocardiographs) machines are used to monitor the electrical activity of the heart and display it on a small screen or record it on a piece of paper. The recordings are used to diagnose the condition of the heart muscle and its nerve system.
Physical And Physiological Basis Of Magnetic Relaxation, by AALIAAALIA ABDULLAH
油
This document discusses the physical and physiological basis of magnetic relaxation, image contrast, and noise in MRI. It explains that MRI works by manipulating the relaxation of excited hydrogen protons back to equilibrium, which provides contrast between tissues with different relaxation times T1 and T2. T1 relaxation recovers the longitudinal magnetization along the magnetic field, while T2 relaxation involves signal decay from spin-spin interactions. MRI sequences exploit variations in T1 and T2 among tissues to generate image contrast and visualize anatomical and physiological features. However, noise from various physical and physiological sources is an inherent challenge that must be addressed.
MR safety concerns arise from static magnetic fields, gradient magnetic fields, and RF magnetic fields. Static magnetic fields can affect implanted medical devices, metallic objects, and physiology. Gradient magnetic fields can induce currents in tissues and stimulate nerves. RF fields can induce currents and cause tissue heating. Strict safety guidelines limit magnetic field exposure and RF energy deposition to protect patients and staff. Pregnant patients and employees require special precautions due to unknown effects of magnetic fields on fetuses.
1. The document discusses safety issues related to magnetic resonance (MR) environments, defining electromagnetic fields and associated biological effects and risks.
2. It outlines definitions from the ASTM standard for marking devices brought into the MR environment and summarizes biological and mechanical effects of static magnetic fields over 1.5 Tesla.
3. Precautions are discussed for implants, pregnancy, projectile risks, and effects on ECG tracings along with safety checklists for patient preparation and equipment.
Digital radiography (DR) uses digital detectors and imaging plates to capture x-rays and produce digital images. There are two main types: direct and indirect conversion. Direct conversion detectors like selenium plates directly convert x-rays to electrical signals. Indirect detectors like CCDs and flat panel detectors use scintillators to first convert x-rays to light, which is then converted to electrical signals. DR provides advantages over film like fully digital storage and transmission of images. Early DR systems included selenium drum detectors in the 1970s-80s and CCD slot scanning in the 1990s, while flat panel detectors since the mid-1990s have provided the best image quality and productivity.
CT perfusion of the head uses x-rays to show which areas of the brain are adequately supplied with blood. It provides detailed information about blood flow and is useful for evaluating conditions like stroke, brain vessel diseases, and tumors. The procedure involves injecting contrast dye and taking multiple scans as it circulates through the brain. It is fast, painless, and can help diagnose conditions and guide treatment.
MRI uses strong magnetic fields and radio waves to produce detailed images of the inside of the body. Protons in the body align with the magnetic field, and radio waves excite the protons causing them to emit signals. The signals are detected by coils and used to construct an image on a computer. Different tissues can be distinguished based on proton density and relaxation times after excitation. Gradient fields are used to localize the source of the signals within the body.
MagnetoenCephaloGraphy油(MEG) is a technique for mapping brain activity by recording油magnetic fields油produced by electrical currents occurring naturally in the油brain, using very sensitive油magnetometers.
This lecture discusses the development of nuclear imaging techniques. It begins with an overview of nuclear imaging and its use of gamma rays and x-rays to form images. The earliest device was the rectilinear scanner, which used a single moving detector. The Anger gamma camera was a significant improvement as it allowed simultaneous detection over a large area. Modern gamma cameras use NaI(Tl) scintillator crystals coupled to PMTs to convert gamma ray interactions to light and then electrical signals. Digital processing is used to determine interaction locations and form images. Collimators are used to selectively detect gamma rays from a desired direction.
The document discusses several safety issues related to MRI, including:
- The strong magnetic fields can attract ferromagnetic objects, posing risks. Patients must remove all metal before an MRI.
- Implants like aneurysm clips or pacemakers may heat up or malfunction in the magnetic field, causing injury.
- Radiofrequency fields used in MRI can cause tissue heating if safety limits are exceeded.
- Loud noise from gradients requires hearing protection. Contrast agents rarely cause reactions but may in some patients.
- Effetti biologici dell'elettrosmog
- Criteri di prevenzione
- Metodi di misura
際際滷s presentate nell'incontro pubblico organizzato da ALSA (Associazione Luciese Salute e Ambiente) tenutosi il 28 Giugno 2015 presso Santa Lucia del Mela (Messina)
4. Per evitare gli incidenti bisogna
conoscere i rischi
e per conoscere i rischi 竪
necessario conoscere la
normativa di sicurezza
5. Il Regolamento di Sicurezza (RS)
di un sito di RM 竪 il documento di
riferimento per la gestione delle attivit
interne al medesimo, alla luce dei rischi
specifici in esso presenti.
Il RS 竪 prodromico alla valutazione del
rischio (art. 28 D.Lgs. 81/08) ed i contenuti
sono determinati in applicazione agli All. I e
IV del D.M.2/8/91.
6. Devono essere indicate:
Norme di comportamento (pazienti, volontari sani,
accompagnatori, visitatori, lavoratori, personale
addetto a rabbocco dei criogeni/manutenzioni,
addetti alle pulizie, )
Procedure gestionali dei pazienti
Disposizioni di sorveglianza fisica per minimizzare
le esposizioni ai campi elettromagnetici
Procedure di emergenza (quench, mancanza di
ossigeno, incendio, black-out elettrico, )
7. Copia del RS deve essere:
Consegnata al datore di lavoro
Consegnata ad ogni lavoratore presente
presso il sito
Estratto affisso in sala consolle
Consegnata a VVFF, responsabile SPP, ditte/
manutenzione e rabbocco criogeni
8. NORME GENERALI DI SICUREZZA
Vietato lingresso al sito a chi non 竪 autorizzato (specie ZAC)
Primo accesso alla ZAC: compilare modulo apposito
Vietato laccesso alla sala magnete e ZAC a: portatori di pace-maker,
impianti con circuiti elettrici, protesi, clips vascolari, schegge
metalliche, preparati intracranici ferromagnetici, donne in gravidanza
(non si applica ai pz)
Vietato introdurre oggetti ferromagnetici mobili
Prima di accedere alla sala magnete depositare ogni oggetto
ferromagnetico e di supporto magnetico ()
Permanere in sala magnete il minimo indispensabile
Lavoratori devono conoscere il RS ed uniformarsi alle norme
contenute
Zona comandi: elenco recapiti (VVFF, anestesisti, SPP, PS, ER, MR)
Segnalare anomalie
Vietato rimuovere segnaletica
Vietato premere pulsanti di emergenza
Vietato fumare in sala-magnete
9. In evidenza:
Vietato lingresso al sito a chi non 竪 autorizzato
(specie ZAC)
Vietato laccesso alla sala magnete e ZAC a:
portatori di pace-maker, impianti con circuiti
elettrici, protesi, clips vascolari, schegge
metalliche, preparati intracranici
ferromagnetici, donne in gravidanza (non si
applica ai pz)
Vietato introdurre oggetti ferromagnetici mobili
Prima di accedere alla sala magnete depositare
ogni oggetto ferromagnetico e di supporto
magnetico ()
10. NORME DI SICUREZZA
PER PAZIENTI
Controindicazioni allesame
Pace-maker cardiaco
Protesi con circuiti elettronici, metalliche e non
Preparati metallici intracranici
Clips vascolari
Schegge ferromagnetiche
Dispositivi intrauterini
Posizionamento del paziente
No cavi scoperti
No cavi a diretto contatto del paziente, no loop
No gambe o braccia incrociate (braccia lungo il corpo
non a contatto)
No coperte (no sintetiche)
11. NORME DI SICUREZZA IN
SITUAZIONI DI EMERGENZA
Quench
senza perdite di He nella sala magnete
con perdite di He nella sala magnete
Allarme ossigeno
Incendio
Black-out elettrico
Presenza accidentale di materiale
ferromagnetico nel magnete
Emergenze assistenziali mediche e
anestesiologiche
Spegnimento pilotato del magnete
14. Campo magnetico statico:
effetto proiettile
La forza dipende da:
massa e forma delloggetto
propriet ferromagnetiche delloggetto
allineamento delloggetto (torsione)
intensit del campo Courtesy of SimplyPhysics.com
17. Incidente avvenuto nella sala
diagnostica di una risonanza
magnetica di un ospedale nelle
vicinanze di New York.
Un paziente 竪 stato ucciso da una
bombola di ossigeno
accidentalmente introdotta nella
sala-magnete
Non sono noti i dettagli.
19. Un paziente ricoverato effettua un
esame di RM. Per le sue condizioni
necessita di un monitoraggio con
ossimetro ad impulsi.
Il livello di saturazione dellossigeno
nel sangue scende da 78% a 68%
durante lesame.
Si decide di sospendere lesame e far
uscire il paziente dal gantry.
20. Nel frattempo, il medico del paziente
porta una bombola di ossigeno
(=22.8 cm, h=130cm, P=81kg) nella
sala magnete.
Nellistante in cui la bombola giunge ai
piedi del lettino, viene attratta verso il
magnete
21. A stento il tecnico vicino al lettino
riesce a schivare il proiettile
rimediando 10cm di abrasioni
superficiali e contusioni al braccio
sinistro.
22. Il regolatore di flusso salta via dalla
bombola e la manopola si frammenta
nellimpatto con il gantry che si rompe
il paziente 竪 ancora sul lettino
allinterno del gantry !
23. La bombola oscilla pericolosamente
attaccata allesterno del gantry
La bombola viene fissata sul gantry e
si decide di fare un quench pilotato
per estrarre il paziente illeso ma
ipossico.
In 2 minuti si effettua il quench, si
rimuove la bombola e si estrae il
paziente che risponde prontamente
alla somministrazione di ossigeno.
24. Costo dellincidente:
- Riparazione del buco nel gantry
- Sostituzione del lettino ($8000)
- Rabbocco con 600l di elio ($10000)
- Servizio tecnico in emergenza ($93000)
Totale:$111000
25. 3
Incidente avvenuto presso il
sito RM della Radiologia
dellOspedale di Cremona
www.radiologiacremona.it
26. Una bombola di ossigeno introdotta
accidentalmente nella sala-magnete, parte e si
incolla al tomografo
5 persone insieme non riescono a staccarla.
27. Sarebbe necessario spegnere il magnete e
riattivarlo (Euro 25.000 e 4 giorni di fermo
macchina)
Si decide allora di imbragare la bombola e di
proteggere l ingresso del gantry
28. La bombola imbragata viene collegata ad una
carrucola saldamente ancorata e viene rimossa
dal gantry
30. Un sacchetto contenente sabbia
ferromagnetica viene introdotto nella
sala-magnete di una RM da 1,5T e
posizionato vicino allinguine per
comprimere e limitare il sanguinamento.
Il paziente viene coperto ed il sacchetto
nascosto.
Allinserimento del paziente nel gantry
del tomografo, il sacchetto si sposta
velocemente e finisce sulle pareti
interne del tomografo.
31. Il paziente mostra contusioni alla
testa e al torace.
Sebbene il tomografo non venga
danneggiato, sono state necessarie
due persone per rimuovere il
sacchetto dal gantry.
32. Raccomandazioni
Alcune sacche contengono anche pellet
ferromagnetici inseriti per aumentare il peso
senza aumentarne il volume.
In casi analoghi, questi sacchetti hanno
provocato danni al magnete, al gantry e alle
bobine.
Si raccomanda solo luso di sacche di sabbia
con etichetta di compatibilit con lambiente
MRI.
In caso di sacche di provenienza dubbia, 竪
raccomandabile impedirne lingresso alla sala-
magnete e chiedere informazioni al fornitore.
33. Gradienti
Sono campi magnetici variabili nello spazio
(6-8 mT/m 25-30 mT/m) e nel tempo.
Si accendono e si spengono molto
velocemente durante e tra lemissione delle
RF.
Causano correnti indotte maggiori nei tessuti
periferici in quanto i gradienti aumentano dal
centro alla periferia del magnete.
34. Radiofrequenze
Generano il segnale che verr misurato.
Solo una piccola parte dellenergia trasmessa
竪 assorbita dai nuclei di H, una parte viene
trasformata in calore allinterno del corpo del
paziente.
35. Le correnti indotte ed il riscaldamento
provocano bruciature sul paziente in
corrispondenza di sensori, cavi o altri
accessori situati a contatto del paziente.
37. Riportate bruciature di 2属 e 3属 grado in
pazienti che effettuano studi RM in cui sono
stati utilizzati cavi o sensori di monitoraggio
(elettrodi o cavi ECG, ossimetro con sensore a
impulsi) o accessori RM come bobine di
superficie.
Sebbene alcune bruciature abbiano richiesto
punti di sutura, nessun incidente mortale 竪
mai stato riportato.
38. Raccomandazioni
3. Essere consapevoli della potenzialit delle
bruciature quando si utilizzino sensori o cavi
2.Non formare loop con i cavi
3.Posizionare i sensori lontano dalle bobine
4.Controllare che i cavi siano isolati e che nessuna
superficie metallica sia in contatto con il paziente.
5.Posizionare i cavi lontani dal paziente e comunque
usare un lenzuolo da interporre tra cavi e cute.
6.Istruire il paziente affinch竪 dia segnalazione se
avverta calore, soprattutto se vicino ai sensori.
7.Nel caso di pazienti incoscienti, verificare la cute
del paziente.
40. 6
Un paziente con DBS bilaterale mostra un
movimento distonico della gamba sinistra subito
dopo aver effettuato un esame RM della testa
(Siemens Expert, 1.0 T, head coil, derivazioni DBS
non connesse al generatore di impulsi).
Nei mesi successivi, la patologia si risolve
completamente.
41. Paziente con DBS bilaterale e derivazioni in
7 regione addominale effettua esame RM della
colonna lombare (Siemens Expert, 1.0 T, body
coil, stato generatore/impulsi non noto)
Deficit neurologico importante: afasia, emiplegia
destra, risposta plantare bilaterale alterata,
TC/RM-encefalo: 7 mesi dopo: severa
emorragia disartria, emiparesi destra,
(elettrodo sx) tremore e bradicinesia.
Riviste le sequenze RM
della colonna lombare e
fatta una stima del SAR:
0.57 1.26 W/kg,
max: 3.92 W/kg
44. Criogeni
I sistemi RM superconduttivi utilizzano elio liquido o
azoto liquido per mantenere la condizione di
superconduttivit.
I gas criogeni sono:
Nocivi
Inodori
Non infiammabili
Il gas ed il magnete sono mantenuti sottovuoto.
La perdita della condizione di vuoto o un aumento
della temperatura, provocano una evaporazione del
gas criogeno.
45. Pericoli
Danni da gelo: ustioni (occhi molto
vulnerabili)
Soffocamento: una concentrazione di O2 <
1718% non 竪 sufficiente alla respirazione
Condensazione dellossigeno: La bassa
temperatura del contenitore di N o He pu嘆
condensare lossigeno con rischio di
incendio.
46. Due possibili effetti:
Boil-off
lenta evaporazione, qualche decina di litri
allora
Quench
evaporazione molto rapida, in poche decine di
secondi tutto lelio liquido passa allo stato
gassoso
Per ogni litro di He o N liquido si producono circa
700 litri di gas !!!
47. In caso di quench
Limpianto presente consente leliminazione dellelio
dalla sala-magnete
In caso di guasto, 竪 necessario azionare lestrazione
forzata dellaria
Entrare nella sala-magnete e liberare il paziente
eventualmente presente
Evacuare larea per 20 minuti
Per laumento della pressione interna alla sala
magnete, potrebbe non aprirsi la porta: rompere la
visiva !
55. Bibliografia
Health Devices Novembre 2008, www.ecri.org,
Decreto del Ministero della Sanit 02/08/1991
D.Lgs. 81/08
www.simplephysics.com
Journal of magnetic resonance imaging 2004, 19:141-143
www.radiologiacremona.it
Health Devices 1998, 27(7):266-267
Health Devices 1991;20(9):362-363
Journal of Neurosurgery. 2004, 101(4):719, author reply 719
Neurosurgery 2005,57:1063
www.mrisafety.com
www.mrisafetyvideo.com
www.fda.gov