ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Python for Data Analysis
Tutorial
Content
2
Overview of Python Libraries
Reading Data; Selecting and Filtering the Data; Data manipulation,
sorting, grouping, rearranging
Plotting the data
Descriptive statistics
Inferential statistics
Python Libraries for Data Science
Many popular Python toolboxes/libraries:
• NumPy
• SciPy
• Pandas
• SciKit-Learn
Visualization libraries
• matplotlib
• Seaborn
and many more …
3
Python Libraries for Data Science
NumPy:
 introduces objects for multidimensional arrays and matrices, as well as
functions that allow to easily perform advanced mathematical and statistical
operations on those objects
 provides vectorization of mathematical operations on arrays and matrices
which significantly improves the performance
 many other python libraries are built on NumPy
4
Link: http://www.numpy.org/
Python Libraries for Data Science
SciPy:
 collection of algorithms for linear algebra, differential equations, numerical
integration, optimization, statistics and more
 part of SciPy Stack
 built on NumPy
5
Link: https://www.scipy.org/scipylib/
Python Libraries for Data Science
Pandas:
 adds data structures and tools designed to work with table-like data (similar
to Series and Data Frames in R)
 provides tools for data manipulation: reshaping, merging, sorting, slicing,
aggregation etc.
 allows handling missing data
6
Link: http://pandas.pydata.org/
Link: http://scikit-learn.org/
Python Libraries for Data Science
SciKit-Learn:
 provides machine learning algorithms: classification, regression, clustering,
model validation etc.
 built on NumPy, SciPy and matplotlib
7
matplotlib:
 python 2D plotting library which produces publication quality figures in a
variety of hardcopy formats
 a set of functionalities similar to those of MATLAB
 line plots, scatter plots, barcharts, histograms, pie charts etc.
 relatively low-level; some effort needed to create advanced visualization
Link: https://matplotlib.org/
Python Libraries for Data Science
8
Seaborn:
 based on matplotlib
 provides high level interface for drawing attractive statistical graphics
 Similar (in style) to the popular ggplot2 library in R
Link: https://seaborn.pydata.org/
Python Libraries for Data Science
9
Download tutorial notebook
# On the Shared Computing Cluster
[scc1 ~] cp /project/scv/examples/python/data_analysis/dataScience.ipynb .
# On a local computer save the link:
http://rcs.bu.edu/examples/python/data_analysis/dataScience.ipynb
10
Start Jupyter nootebook
# On the Shared Computing Cluster
[scc1 ~] jupyter notebook
11
In [ ]:
Loading Python Libraries
12
#Import Python Libraries
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib as mpl
import seaborn as sns
Press Shift+Enter to execute the jupyter cell
In [ ]:
Reading data using pandas
13
#Read csv file
df = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/Salaries.csv")
There is a number of pandas commands to read other data formats:
pd.read_excel('myfile.xlsx',sheet_name='Sheet1', index_col=None, na_values=['NA'])
pd.read_stata('myfile.dta')
pd.read_sas('myfile.sas7bdat')
pd.read_hdf('myfile.h5','df')
Note: The above command has many optional arguments to fine-tune the data import process.
In [3]:
Exploring data frames
14
#List first 5 records
df.head()
Out[3]:
Hands-on exercises
15
 Try to read the first 10, 20, 50 records;
 Can you guess how to view the last few records; Hint:
Data Frame data types
Pandas Type Native Python Type Description
object string The most general dtype. Will be
assigned to your column if column
has mixed types (numbers and
strings).
int64 int Numeric characters. 64 refers to
the memory allocated to hold this
character.
float64 float Numeric characters with decimals.
If a column contains numbers and
NaNs(see below), pandas will
default to float64, in case your
missing value has a decimal.
datetime64, timedelta[ns] N/A (but see the datetime module
in Python’s standard library)
Values meant to hold time data.
Look into these for time series
experiments.
16
In [4]:
Data Frame data types
17
#Check a particular column type
df['salary'].dtype
Out[4]: dtype('int64')
In [5]: #Check types for all the columns
df.dtypes
Out[4]: rank
discipline
phd
service
sex
salary
dtype: object
object
object
int64
int64
object
int64
Data Frames attributes
18
Python objects have attributes and methods.
df.attribute description
dtypes list the types of the columns
columns list the column names
axes list the row labels and column names
ndim number of dimensions
size number of elements
shape return a tuple representing the dimensionality
values numpy representation of the data
Hands-on exercises
19
 Find how many records this data frame has;
 How many elements are there?
 What are the column names?
 What types of columns we have in this data frame?
Data Frames methods
20
df.method() description
head( [n] ), tail( [n] ) first/last n rows
describe() generate descriptive statistics (for numeric columns only)
max(), min() return max/min values for all numeric columns
mean(), median() return mean/median values for all numeric columns
std() standard deviation
sample([n]) returns a random sample of the data frame
dropna() drop all the records with missing values
Unlike attributes, python methods have parenthesis.
All attributes and methods can be listed with a dir() function: dir(df)
Hands-on exercises
21
 Give the summary for the numeric columns in the dataset
 Calculate standard deviation for all numeric columns;
 What are the mean values of the first 50 records in the dataset? Hint: use
head() method to subset the first 50 records and then calculate the mean
Selecting a column in a Data Frame
Method 1: Subset the data frame using column name:
df['sex']
Method 2: Use the column name as an attribute:
df.sex
Note: there is an attribute rank for pandas data frames, so to select a column with a name
"rank" we should use method 1.
22
Hands-on exercises
23
 Calculate the basic statistics for the salary column;
 Find how many values in the salary column (use count method);
 Calculate the average salary;
Data Frames groupby method
24
Using "group by" method we can:
• Split the data into groups based on some criteria
• Calculate statistics (or apply a function) to each group
• Similar to dplyr() function in R
In [ ]: #Group data using rank
df_rank = df.groupby(['rank'])
In [ ]: #Calculate mean value for each numeric column per each group
df_rank.mean()
Data Frames groupby method
25
Once groupby object is create we can calculate various statistics for each group:
In [ ]: #Calculate mean salary for each professor rank:
df.groupby('rank')[['salary']].mean()
Note: If single brackets are used to specify the column (e.g. salary), then the output is Pandas Series object.
When double brackets are used the output is a Data Frame
Data Frames groupby method
26
groupby performance notes:
- no grouping/splitting occurs until it's needed. Creating the groupby object
only verifies that you have passed a valid mapping
- by default the group keys are sorted during the groupby operation. You may
want to pass sort=False for potential speedup:
In [ ]: #Calculate mean salary for each professor rank:
df.groupby(['rank'], sort=False)[['salary']].mean()
Data Frame: filtering
27
To subset the data we can apply Boolean indexing. This indexing is commonly
known as a filter. For example if we want to subset the rows in which the salary
value is greater than $120K:
In [ ]: #Calculate mean salary for each professor rank:
df_sub = df[ df['salary'] > 120000 ]
In [ ]: #Select only those rows that contain female professors:
df_f = df[ df['sex'] == 'Female' ]
Any Boolean operator can be used to subset the data:
> greater; >= greater or equal;
< less; <= less or equal;
== equal; != not equal;
Data Frames: Slicing
28
There are a number of ways to subset the Data Frame:
• one or more columns
• one or more rows
• a subset of rows and columns
Rows and columns can be selected by their position or label
Data Frames: Slicing
29
When selecting one column, it is possible to use single set of brackets, but the
resulting object will be a Series (not a DataFrame):
In [ ]: #Select column salary:
df['salary']
When we need to select more than one column and/or make the output to be a
DataFrame, we should use double brackets:
In [ ]: #Select column salary:
df[['rank','salary']]
Data Frames: Selecting rows
30
If we need to select a range of rows, we can specify the range using ":"
In [ ]: #Select rows by their position:
df[10:20]
Notice that the first row has a position 0, and the last value in the range is omitted:
So for 0:10 range the first 10 rows are returned with the positions starting with 0
and ending with 9
Data Frames: method loc
31
If we need to select a range of rows, using their labels we can use method loc:
In [ ]: #Select rows by their labels:
df_sub.loc[10:20,['rank','sex','salary']]
Out[ ]:
Data Frames: method iloc
32
If we need to select a range of rows and/or columns, using their positions we can
use method iloc:
In [ ]: #Select rows by their labels:
df_sub.iloc[10:20,[0, 3, 4, 5]]
Out[ ]:
Data Frames: method iloc (summary)
33
df.iloc[0] # First row of a data frame
df.iloc[i] #(i+1)th row
df.iloc[-1] # Last row
df.iloc[:, 0] # First column
df.iloc[:, -1] # Last column
df.iloc[0:7] #First 7 rows
df.iloc[:, 0:2] #First 2 columns
df.iloc[1:3, 0:2] #Second through third rows and first 2 columns
df.iloc[[0,5], [1,3]] #1st and 6th rows and 2nd and 4th columns
Data Frames: Sorting
34
We can sort the data by a value in the column. By default the sorting will occur in
ascending order and a new data frame is return.
In [ ]: # Create a new data frame from the original sorted by the column Salary
df_sorted = df.sort_values( by ='service')
df_sorted.head()
Out[ ]:
Data Frames: Sorting
35
We can sort the data using 2 or more columns:
In [ ]: df_sorted = df.sort_values( by =['service', 'salary'], ascending = [True, False])
df_sorted.head(10)
Out[ ]:
Missing Values
36
Missing values are marked as NaN
In [ ]: # Read a dataset with missing values
flights = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/flights.csv")
In [ ]: # Select the rows that have at least one missing value
flights[flights.isnull().any(axis=1)].head()
Out[ ]:
Missing Values
37
There are a number of methods to deal with missing values in the data frame:
df.method() description
dropna() Drop missing observations
dropna(how='all') Drop observations where all cells is NA
dropna(axis=1, how='all') Drop column if all the values are missing
dropna(thresh = 5) Drop rows that contain less than 5 non-missing values
fillna(0) Replace missing values with zeros
isnull() returns True if the value is missing
notnull() Returns True for non-missing values
Missing Values
38
• When summing the data, missing values will be treated as zero
• If all values are missing, the sum will be equal to NaN
• cumsum() and cumprod() methods ignore missing values but preserve them in
the resulting arrays
• Missing values in GroupBy method are excluded (just like in R)
• Many descriptive statistics methods have skipna option to control if missing
data should be excluded . This value is set to True by default (unlike R)
Aggregation Functions in Pandas
39
Aggregation - computing a summary statistic about each group, i.e.
• compute group sums or means
• compute group sizes/counts
Common aggregation functions:
min, max
count, sum, prod
mean, median, mode, mad
std, var
Aggregation Functions in Pandas
40
agg() method are useful when multiple statistics are computed per column:
In [ ]: flights[['dep_delay','arr_delay']].agg(['min','mean','max'])
Out[ ]:
Basic Descriptive Statistics
41
df.method() description
describe Basic statistics (count, mean, std, min, quantiles, max)
min, max Minimum and maximum values
mean, median, mode Arithmetic average, median and mode
var, std Variance and standard deviation
sem Standard error of mean
skew Sample skewness
kurt kurtosis
Graphics to explore the data
42
To show graphs within Python notebook include inline directive:
In [ ]: %matplotlib inline
Seaborn package is built on matplotlib but provides high level
interface for drawing attractive statistical graphics, similar to ggplot2
library in R. It specifically targets statistical data visualization
Graphics
43
description
distplot histogram
barplot estimate of central tendency for a numeric variable
violinplot similar to boxplot, also shows the probability density of the
data
jointplot Scatterplot
regplot Regression plot
pairplot Pairplot
boxplot boxplot
swarmplot categorical scatterplot
factorplot General categorical plot
Basic statistical Analysis
44
statsmodel and scikit-learn - both have a number of function for statistical analysis
The first one is mostly used for regular analysis using R style formulas, while scikit-learn is
more tailored for Machine Learning.
statsmodels:
• linear regressions
• ANOVA tests
• hypothesis testings
• many more ...
scikit-learn:
• kmeans
• support vector machines
• random forests
• many more ...
See examples in the Tutorial Notebook
Conclusion
Thank you for attending the tutorial.
Please fill the evaluation form:
http://scv.bu.edu/survey/tutorial_evaluation.html
Questions:
email: koleinik@bu.edu (Katia Oleinik)
45

More Related Content

Similar to Python-for-Data-Analysis.pptx (20)

Python-for-Data-Analysis.pptx
Python-for-Data-Analysis.pptxPython-for-Data-Analysis.pptx
Python-for-Data-Analysis.pptx
tangadhurai
Ìý
Python-for-Data-Analysis.pdf
Python-for-Data-Analysis.pdfPython-for-Data-Analysis.pdf
Python-for-Data-Analysis.pdf
ssuser598883
Ìý
Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018
DataLab Community
Ìý
More on Pandas.pptx
More on Pandas.pptxMore on Pandas.pptx
More on Pandas.pptx
VirajPathania1
Ìý
Unit 3_Numpy_Vsp.pptx
Unit 3_Numpy_Vsp.pptxUnit 3_Numpy_Vsp.pptx
Unit 3_Numpy_Vsp.pptx
prakashvs7
Ìý
Lecture 1 Pandas Basics.pptx machine learning
Lecture 1 Pandas Basics.pptx machine learningLecture 1 Pandas Basics.pptx machine learning
Lecture 1 Pandas Basics.pptx machine learning
my6305874
Ìý
Pandas Dataframe reading data Kirti final.pptx
Pandas Dataframe reading data  Kirti final.pptxPandas Dataframe reading data  Kirti final.pptx
Pandas Dataframe reading data Kirti final.pptx
Kirti Verma
Ìý
Unit 1 Ch 2 Data Frames digital vis.pptx
Unit 1 Ch 2 Data Frames digital vis.pptxUnit 1 Ch 2 Data Frames digital vis.pptx
Unit 1 Ch 2 Data Frames digital vis.pptx
abida451786
Ìý
Unit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptxUnit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptx
vishnupriyapm4
Ìý
Unit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptxUnit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptx
vishnupriyapm4
Ìý
Lecture 3 intro2data
Lecture 3 intro2dataLecture 3 intro2data
Lecture 3 intro2data
Johnson Ubah
Ìý
XII - 2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
XII -  2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdfXII -  2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
XII - 2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
KrishnaJyotish1
Ìý
pandasppt with informative topics coverage.pptx
pandasppt with informative topics coverage.pptxpandasppt with informative topics coverage.pptx
pandasppt with informative topics coverage.pptx
vallarasu200364
Ìý
Unit 4_Working with Graphs _python (2).pptx
Unit 4_Working with Graphs _python (2).pptxUnit 4_Working with Graphs _python (2).pptx
Unit 4_Working with Graphs _python (2).pptx
prakashvs7
Ìý
Data Management in Python
Data Management in PythonData Management in Python
Data Management in Python
Sankhya_Analytics
Ìý
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptxfINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
dataKarthik
Ìý
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesgesdvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
iapreddy2004
Ìý
Aggregate.pptx
Aggregate.pptxAggregate.pptx
Aggregate.pptx
Ramakrishna Reddy Bijjam
Ìý
Python Pandas
Python PandasPython Pandas
Python Pandas
Sunil OS
Ìý
Numpy_Pandas_for beginners_________.pptx
Numpy_Pandas_for beginners_________.pptxNumpy_Pandas_for beginners_________.pptx
Numpy_Pandas_for beginners_________.pptx
Abhi Marvel
Ìý
Python-for-Data-Analysis.pptx
Python-for-Data-Analysis.pptxPython-for-Data-Analysis.pptx
Python-for-Data-Analysis.pptx
tangadhurai
Ìý
Python-for-Data-Analysis.pdf
Python-for-Data-Analysis.pdfPython-for-Data-Analysis.pdf
Python-for-Data-Analysis.pdf
ssuser598883
Ìý
Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018
DataLab Community
Ìý
More on Pandas.pptx
More on Pandas.pptxMore on Pandas.pptx
More on Pandas.pptx
VirajPathania1
Ìý
Unit 3_Numpy_Vsp.pptx
Unit 3_Numpy_Vsp.pptxUnit 3_Numpy_Vsp.pptx
Unit 3_Numpy_Vsp.pptx
prakashvs7
Ìý
Lecture 1 Pandas Basics.pptx machine learning
Lecture 1 Pandas Basics.pptx machine learningLecture 1 Pandas Basics.pptx machine learning
Lecture 1 Pandas Basics.pptx machine learning
my6305874
Ìý
Pandas Dataframe reading data Kirti final.pptx
Pandas Dataframe reading data  Kirti final.pptxPandas Dataframe reading data  Kirti final.pptx
Pandas Dataframe reading data Kirti final.pptx
Kirti Verma
Ìý
Unit 1 Ch 2 Data Frames digital vis.pptx
Unit 1 Ch 2 Data Frames digital vis.pptxUnit 1 Ch 2 Data Frames digital vis.pptx
Unit 1 Ch 2 Data Frames digital vis.pptx
abida451786
Ìý
Unit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptxUnit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptx
vishnupriyapm4
Ìý
Unit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptxUnit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptx
vishnupriyapm4
Ìý
Lecture 3 intro2data
Lecture 3 intro2dataLecture 3 intro2data
Lecture 3 intro2data
Johnson Ubah
Ìý
XII - 2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
XII -  2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdfXII -  2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
XII - 2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
KrishnaJyotish1
Ìý
pandasppt with informative topics coverage.pptx
pandasppt with informative topics coverage.pptxpandasppt with informative topics coverage.pptx
pandasppt with informative topics coverage.pptx
vallarasu200364
Ìý
Unit 4_Working with Graphs _python (2).pptx
Unit 4_Working with Graphs _python (2).pptxUnit 4_Working with Graphs _python (2).pptx
Unit 4_Working with Graphs _python (2).pptx
prakashvs7
Ìý
Data Management in Python
Data Management in PythonData Management in Python
Data Management in Python
Sankhya_Analytics
Ìý
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptxfINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
dataKarthik
Ìý
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesgesdvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
iapreddy2004
Ìý
Python Pandas
Python PandasPython Pandas
Python Pandas
Sunil OS
Ìý
Numpy_Pandas_for beginners_________.pptx
Numpy_Pandas_for beginners_________.pptxNumpy_Pandas_for beginners_________.pptx
Numpy_Pandas_for beginners_________.pptx
Abhi Marvel
Ìý

Recently uploaded (20)

iam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptxiam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptx
muhweziart
Ìý
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdfstages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
esguerramark1991
Ìý
Developing a Music Distribution Plan for Bri La Pelúa
Developing a Music Distribution Plan for Bri La PelúaDeveloping a Music Distribution Plan for Bri La Pelúa
Developing a Music Distribution Plan for Bri La Pelúa
irramos8843
Ìý
CloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdfCloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdf
Rodney Joyce
Ìý
Relationship between Happiness & LifeQuality .pdf
Relationship between Happiness & LifeQuality .pdfRelationship between Happiness & LifeQuality .pdf
Relationship between Happiness & LifeQuality .pdf
wrachelsong
Ìý
Valkey 101 - SCaLE 22x March 2025 Stokes.pdf
Valkey 101 - SCaLE 22x March 2025 Stokes.pdfValkey 101 - SCaLE 22x March 2025 Stokes.pdf
Valkey 101 - SCaLE 22x March 2025 Stokes.pdf
Dave Stokes
Ìý
Stasiun kernel pabrik kelapa sawit indonesia
Stasiun kernel pabrik kelapa sawit indonesiaStasiun kernel pabrik kelapa sawit indonesia
Stasiun kernel pabrik kelapa sawit indonesia
fikrimanurung1
Ìý
MLecture 1 Introduction to AI . The basics.pptx
MLecture 1 Introduction to AI . The basics.pptxMLecture 1 Introduction to AI . The basics.pptx
MLecture 1 Introduction to AI . The basics.pptx
FaizaKhan720183
Ìý
Kaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI CompetitionsKaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI Competitions
rasheedsrq
Ìý
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
suchanadatta3
Ìý
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
suchanadatta3
Ìý
Design Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AIDesign Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AI
aaronmwinters
Ìý
Presentation.2 .reversal. reversal. pptx
Presentation.2 .reversal. reversal. pptxPresentation.2 .reversal. reversal. pptx
Presentation.2 .reversal. reversal. pptx
siliaselim87
Ìý
Presentation1.pptx for data and table analysis
Presentation1.pptx for data and table analysisPresentation1.pptx for data and table analysis
Presentation1.pptx for data and table analysis
vatsalsingla4
Ìý
Hire Android App Developers in India with Cerebraix
Hire Android App Developers in India with CerebraixHire Android App Developers in India with Cerebraix
Hire Android App Developers in India with Cerebraix
cerebraixs
Ìý
AI + Disability. Coded Futures: Better opportunities or biased outcomes?
AI + Disability. Coded Futures: Better opportunities or biased outcomes?AI + Disability. Coded Futures: Better opportunities or biased outcomes?
AI + Disability. Coded Futures: Better opportunities or biased outcomes?
Christine Hemphill
Ìý
Class 3-Workforce profile updated P.pptx
Class 3-Workforce profile updated P.pptxClass 3-Workforce profile updated P.pptx
Class 3-Workforce profile updated P.pptx
angelananalucky
Ìý
exampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexample
lembiczkat
Ìý
Stasiun kernel pengolahan kelapa sawit indonesia
Stasiun kernel pengolahan kelapa sawit indonesiaStasiun kernel pengolahan kelapa sawit indonesia
Stasiun kernel pengolahan kelapa sawit indonesia
fikrimanurung1
Ìý
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo GuruThe Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
kenyoncenteno12
Ìý
iam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptxiam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptx
muhweziart
Ìý
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdfstages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
esguerramark1991
Ìý
Developing a Music Distribution Plan for Bri La Pelúa
Developing a Music Distribution Plan for Bri La PelúaDeveloping a Music Distribution Plan for Bri La Pelúa
Developing a Music Distribution Plan for Bri La Pelúa
irramos8843
Ìý
CloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdfCloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdf
Rodney Joyce
Ìý
Relationship between Happiness & LifeQuality .pdf
Relationship between Happiness & LifeQuality .pdfRelationship between Happiness & LifeQuality .pdf
Relationship between Happiness & LifeQuality .pdf
wrachelsong
Ìý
Valkey 101 - SCaLE 22x March 2025 Stokes.pdf
Valkey 101 - SCaLE 22x March 2025 Stokes.pdfValkey 101 - SCaLE 22x March 2025 Stokes.pdf
Valkey 101 - SCaLE 22x March 2025 Stokes.pdf
Dave Stokes
Ìý
Stasiun kernel pabrik kelapa sawit indonesia
Stasiun kernel pabrik kelapa sawit indonesiaStasiun kernel pabrik kelapa sawit indonesia
Stasiun kernel pabrik kelapa sawit indonesia
fikrimanurung1
Ìý
MLecture 1 Introduction to AI . The basics.pptx
MLecture 1 Introduction to AI . The basics.pptxMLecture 1 Introduction to AI . The basics.pptx
MLecture 1 Introduction to AI . The basics.pptx
FaizaKhan720183
Ìý
Kaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI CompetitionsKaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI Competitions
rasheedsrq
Ìý
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
suchanadatta3
Ìý
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
suchanadatta3
Ìý
Design Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AIDesign Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AI
aaronmwinters
Ìý
Presentation.2 .reversal. reversal. pptx
Presentation.2 .reversal. reversal. pptxPresentation.2 .reversal. reversal. pptx
Presentation.2 .reversal. reversal. pptx
siliaselim87
Ìý
Presentation1.pptx for data and table analysis
Presentation1.pptx for data and table analysisPresentation1.pptx for data and table analysis
Presentation1.pptx for data and table analysis
vatsalsingla4
Ìý
Hire Android App Developers in India with Cerebraix
Hire Android App Developers in India with CerebraixHire Android App Developers in India with Cerebraix
Hire Android App Developers in India with Cerebraix
cerebraixs
Ìý
AI + Disability. Coded Futures: Better opportunities or biased outcomes?
AI + Disability. Coded Futures: Better opportunities or biased outcomes?AI + Disability. Coded Futures: Better opportunities or biased outcomes?
AI + Disability. Coded Futures: Better opportunities or biased outcomes?
Christine Hemphill
Ìý
Class 3-Workforce profile updated P.pptx
Class 3-Workforce profile updated P.pptxClass 3-Workforce profile updated P.pptx
Class 3-Workforce profile updated P.pptx
angelananalucky
Ìý
exampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexample
lembiczkat
Ìý
Stasiun kernel pengolahan kelapa sawit indonesia
Stasiun kernel pengolahan kelapa sawit indonesiaStasiun kernel pengolahan kelapa sawit indonesia
Stasiun kernel pengolahan kelapa sawit indonesia
fikrimanurung1
Ìý
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo GuruThe Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
kenyoncenteno12
Ìý

Python-for-Data-Analysis.pptx

  • 1. Python for Data Analysis
  • 2. Tutorial Content 2 Overview of Python Libraries Reading Data; Selecting and Filtering the Data; Data manipulation, sorting, grouping, rearranging Plotting the data Descriptive statistics Inferential statistics
  • 3. Python Libraries for Data Science Many popular Python toolboxes/libraries: • NumPy • SciPy • Pandas • SciKit-Learn Visualization libraries • matplotlib • Seaborn and many more … 3
  • 4. Python Libraries for Data Science NumPy:  introduces objects for multidimensional arrays and matrices, as well as functions that allow to easily perform advanced mathematical and statistical operations on those objects  provides vectorization of mathematical operations on arrays and matrices which significantly improves the performance  many other python libraries are built on NumPy 4 Link: http://www.numpy.org/
  • 5. Python Libraries for Data Science SciPy:  collection of algorithms for linear algebra, differential equations, numerical integration, optimization, statistics and more  part of SciPy Stack  built on NumPy 5 Link: https://www.scipy.org/scipylib/
  • 6. Python Libraries for Data Science Pandas:  adds data structures and tools designed to work with table-like data (similar to Series and Data Frames in R)  provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation etc.  allows handling missing data 6 Link: http://pandas.pydata.org/
  • 7. Link: http://scikit-learn.org/ Python Libraries for Data Science SciKit-Learn:  provides machine learning algorithms: classification, regression, clustering, model validation etc.  built on NumPy, SciPy and matplotlib 7
  • 8. matplotlib:  python 2D plotting library which produces publication quality figures in a variety of hardcopy formats  a set of functionalities similar to those of MATLAB  line plots, scatter plots, barcharts, histograms, pie charts etc.  relatively low-level; some effort needed to create advanced visualization Link: https://matplotlib.org/ Python Libraries for Data Science 8
  • 9. Seaborn:  based on matplotlib  provides high level interface for drawing attractive statistical graphics  Similar (in style) to the popular ggplot2 library in R Link: https://seaborn.pydata.org/ Python Libraries for Data Science 9
  • 10. Download tutorial notebook # On the Shared Computing Cluster [scc1 ~] cp /project/scv/examples/python/data_analysis/dataScience.ipynb . # On a local computer save the link: http://rcs.bu.edu/examples/python/data_analysis/dataScience.ipynb 10
  • 11. Start Jupyter nootebook # On the Shared Computing Cluster [scc1 ~] jupyter notebook 11
  • 12. In [ ]: Loading Python Libraries 12 #Import Python Libraries import numpy as np import scipy as sp import pandas as pd import matplotlib as mpl import seaborn as sns Press Shift+Enter to execute the jupyter cell
  • 13. In [ ]: Reading data using pandas 13 #Read csv file df = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/Salaries.csv") There is a number of pandas commands to read other data formats: pd.read_excel('myfile.xlsx',sheet_name='Sheet1', index_col=None, na_values=['NA']) pd.read_stata('myfile.dta') pd.read_sas('myfile.sas7bdat') pd.read_hdf('myfile.h5','df') Note: The above command has many optional arguments to fine-tune the data import process.
  • 14. In [3]: Exploring data frames 14 #List first 5 records df.head() Out[3]:
  • 15. Hands-on exercises 15  Try to read the first 10, 20, 50 records;  Can you guess how to view the last few records; Hint:
  • 16. Data Frame data types Pandas Type Native Python Type Description object string The most general dtype. Will be assigned to your column if column has mixed types (numbers and strings). int64 int Numeric characters. 64 refers to the memory allocated to hold this character. float64 float Numeric characters with decimals. If a column contains numbers and NaNs(see below), pandas will default to float64, in case your missing value has a decimal. datetime64, timedelta[ns] N/A (but see the datetime module in Python’s standard library) Values meant to hold time data. Look into these for time series experiments. 16
  • 17. In [4]: Data Frame data types 17 #Check a particular column type df['salary'].dtype Out[4]: dtype('int64') In [5]: #Check types for all the columns df.dtypes Out[4]: rank discipline phd service sex salary dtype: object object object int64 int64 object int64
  • 18. Data Frames attributes 18 Python objects have attributes and methods. df.attribute description dtypes list the types of the columns columns list the column names axes list the row labels and column names ndim number of dimensions size number of elements shape return a tuple representing the dimensionality values numpy representation of the data
  • 19. Hands-on exercises 19  Find how many records this data frame has;  How many elements are there?  What are the column names?  What types of columns we have in this data frame?
  • 20. Data Frames methods 20 df.method() description head( [n] ), tail( [n] ) first/last n rows describe() generate descriptive statistics (for numeric columns only) max(), min() return max/min values for all numeric columns mean(), median() return mean/median values for all numeric columns std() standard deviation sample([n]) returns a random sample of the data frame dropna() drop all the records with missing values Unlike attributes, python methods have parenthesis. All attributes and methods can be listed with a dir() function: dir(df)
  • 21. Hands-on exercises 21  Give the summary for the numeric columns in the dataset  Calculate standard deviation for all numeric columns;  What are the mean values of the first 50 records in the dataset? Hint: use head() method to subset the first 50 records and then calculate the mean
  • 22. Selecting a column in a Data Frame Method 1: Subset the data frame using column name: df['sex'] Method 2: Use the column name as an attribute: df.sex Note: there is an attribute rank for pandas data frames, so to select a column with a name "rank" we should use method 1. 22
  • 23. Hands-on exercises 23  Calculate the basic statistics for the salary column;  Find how many values in the salary column (use count method);  Calculate the average salary;
  • 24. Data Frames groupby method 24 Using "group by" method we can: • Split the data into groups based on some criteria • Calculate statistics (or apply a function) to each group • Similar to dplyr() function in R In [ ]: #Group data using rank df_rank = df.groupby(['rank']) In [ ]: #Calculate mean value for each numeric column per each group df_rank.mean()
  • 25. Data Frames groupby method 25 Once groupby object is create we can calculate various statistics for each group: In [ ]: #Calculate mean salary for each professor rank: df.groupby('rank')[['salary']].mean() Note: If single brackets are used to specify the column (e.g. salary), then the output is Pandas Series object. When double brackets are used the output is a Data Frame
  • 26. Data Frames groupby method 26 groupby performance notes: - no grouping/splitting occurs until it's needed. Creating the groupby object only verifies that you have passed a valid mapping - by default the group keys are sorted during the groupby operation. You may want to pass sort=False for potential speedup: In [ ]: #Calculate mean salary for each professor rank: df.groupby(['rank'], sort=False)[['salary']].mean()
  • 27. Data Frame: filtering 27 To subset the data we can apply Boolean indexing. This indexing is commonly known as a filter. For example if we want to subset the rows in which the salary value is greater than $120K: In [ ]: #Calculate mean salary for each professor rank: df_sub = df[ df['salary'] > 120000 ] In [ ]: #Select only those rows that contain female professors: df_f = df[ df['sex'] == 'Female' ] Any Boolean operator can be used to subset the data: > greater; >= greater or equal; < less; <= less or equal; == equal; != not equal;
  • 28. Data Frames: Slicing 28 There are a number of ways to subset the Data Frame: • one or more columns • one or more rows • a subset of rows and columns Rows and columns can be selected by their position or label
  • 29. Data Frames: Slicing 29 When selecting one column, it is possible to use single set of brackets, but the resulting object will be a Series (not a DataFrame): In [ ]: #Select column salary: df['salary'] When we need to select more than one column and/or make the output to be a DataFrame, we should use double brackets: In [ ]: #Select column salary: df[['rank','salary']]
  • 30. Data Frames: Selecting rows 30 If we need to select a range of rows, we can specify the range using ":" In [ ]: #Select rows by their position: df[10:20] Notice that the first row has a position 0, and the last value in the range is omitted: So for 0:10 range the first 10 rows are returned with the positions starting with 0 and ending with 9
  • 31. Data Frames: method loc 31 If we need to select a range of rows, using their labels we can use method loc: In [ ]: #Select rows by their labels: df_sub.loc[10:20,['rank','sex','salary']] Out[ ]:
  • 32. Data Frames: method iloc 32 If we need to select a range of rows and/or columns, using their positions we can use method iloc: In [ ]: #Select rows by their labels: df_sub.iloc[10:20,[0, 3, 4, 5]] Out[ ]:
  • 33. Data Frames: method iloc (summary) 33 df.iloc[0] # First row of a data frame df.iloc[i] #(i+1)th row df.iloc[-1] # Last row df.iloc[:, 0] # First column df.iloc[:, -1] # Last column df.iloc[0:7] #First 7 rows df.iloc[:, 0:2] #First 2 columns df.iloc[1:3, 0:2] #Second through third rows and first 2 columns df.iloc[[0,5], [1,3]] #1st and 6th rows and 2nd and 4th columns
  • 34. Data Frames: Sorting 34 We can sort the data by a value in the column. By default the sorting will occur in ascending order and a new data frame is return. In [ ]: # Create a new data frame from the original sorted by the column Salary df_sorted = df.sort_values( by ='service') df_sorted.head() Out[ ]:
  • 35. Data Frames: Sorting 35 We can sort the data using 2 or more columns: In [ ]: df_sorted = df.sort_values( by =['service', 'salary'], ascending = [True, False]) df_sorted.head(10) Out[ ]:
  • 36. Missing Values 36 Missing values are marked as NaN In [ ]: # Read a dataset with missing values flights = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/flights.csv") In [ ]: # Select the rows that have at least one missing value flights[flights.isnull().any(axis=1)].head() Out[ ]:
  • 37. Missing Values 37 There are a number of methods to deal with missing values in the data frame: df.method() description dropna() Drop missing observations dropna(how='all') Drop observations where all cells is NA dropna(axis=1, how='all') Drop column if all the values are missing dropna(thresh = 5) Drop rows that contain less than 5 non-missing values fillna(0) Replace missing values with zeros isnull() returns True if the value is missing notnull() Returns True for non-missing values
  • 38. Missing Values 38 • When summing the data, missing values will be treated as zero • If all values are missing, the sum will be equal to NaN • cumsum() and cumprod() methods ignore missing values but preserve them in the resulting arrays • Missing values in GroupBy method are excluded (just like in R) • Many descriptive statistics methods have skipna option to control if missing data should be excluded . This value is set to True by default (unlike R)
  • 39. Aggregation Functions in Pandas 39 Aggregation - computing a summary statistic about each group, i.e. • compute group sums or means • compute group sizes/counts Common aggregation functions: min, max count, sum, prod mean, median, mode, mad std, var
  • 40. Aggregation Functions in Pandas 40 agg() method are useful when multiple statistics are computed per column: In [ ]: flights[['dep_delay','arr_delay']].agg(['min','mean','max']) Out[ ]:
  • 41. Basic Descriptive Statistics 41 df.method() description describe Basic statistics (count, mean, std, min, quantiles, max) min, max Minimum and maximum values mean, median, mode Arithmetic average, median and mode var, std Variance and standard deviation sem Standard error of mean skew Sample skewness kurt kurtosis
  • 42. Graphics to explore the data 42 To show graphs within Python notebook include inline directive: In [ ]: %matplotlib inline Seaborn package is built on matplotlib but provides high level interface for drawing attractive statistical graphics, similar to ggplot2 library in R. It specifically targets statistical data visualization
  • 43. Graphics 43 description distplot histogram barplot estimate of central tendency for a numeric variable violinplot similar to boxplot, also shows the probability density of the data jointplot Scatterplot regplot Regression plot pairplot Pairplot boxplot boxplot swarmplot categorical scatterplot factorplot General categorical plot
  • 44. Basic statistical Analysis 44 statsmodel and scikit-learn - both have a number of function for statistical analysis The first one is mostly used for regular analysis using R style formulas, while scikit-learn is more tailored for Machine Learning. statsmodels: • linear regressions • ANOVA tests • hypothesis testings • many more ... scikit-learn: • kmeans • support vector machines • random forests • many more ... See examples in the Tutorial Notebook
  • 45. Conclusion Thank you for attending the tutorial. Please fill the evaluation form: http://scv.bu.edu/survey/tutorial_evaluation.html Questions: email: koleinik@bu.edu (Katia Oleinik) 45