ΊέΊέί£
Submit Search
Rangkuman Materi Kalkulus
β’
Download as DOCX, PDF
β’
3 likes
β’
1,613 views
I
Indah Kusumawati
Follow
Kalkulus 2
Read less
Read more
1 of 26
Download now
Downloaded 25 times
More Related Content
Rangkuman Materi Kalkulus
1.
1 Pertemuan ke-1 Senin, 22
Februari 2016 INTEGRAL TAK TENTU Definisi : β« π( π₯) ππ₯ = π( π₯)+ πΆ Kebalikan diferensial atau turunan : π( π₯) = π₯ π β πβ²( π₯) = π . π₯ πβ1 Kaidah-kaidah : a. β« ππ₯ = π₯ + πΆ b. β« πππ₯ = ππ₯ + πΆ c. β« π₯ π ππ₯ = 1 π+1 π₯ π+1 + πΆ β π β β1 d. β« ππ₯ π ππ₯ = π π+1 π₯ π+1 + πΆ β π β β1 Contoh-contoh : 1. β« 3π₯2 ππ₯ = π₯3 + πΆ 2. β« 3ππ₯ = 3π₯ + πΆ 3. β« π₯4 ππ₯ = 1 4+1 π₯4+1 + πΆ = 1 5 π₯5 + πΆ 4. β« 4π₯5 ππ₯ = 4 5+1 π₯5+1 + πΆ = 4 6 π₯6 + πΆ = 2 3 π₯5 + πΆ 5. β« (6π₯2 + 7π₯ β 2) ππ₯ = 6 3 π₯3 + 7 2 π₯2 β 2π₯ + πΆ = 2π₯3 + 3 1 2 π₯2 β 2π₯ + πΆ 6. β« (2π₯ + 4)2 ππ₯ = β« (4π₯2 + 16π₯ + 16)2 ππ₯ = 4 3 π₯3 + 16 2 π₯2 + 16π₯ + πΆ = 1 1 3 π₯3 + 8π₯2 + 16π₯ + πΆ 7. β« ( π₯ β 5)( π₯ + 6) ππ₯ = β« ( π₯2 + π₯ β 30) ππ₯ = 1 3 π₯3 + 1 2 π₯2 β 30π₯ + πΆ
2.
2 8. β« 2 3 π₯2 β 4π₯ 1 2
β 1 3 π₯ ππ₯ = β« 2 3 π₯2 β β« 4π₯ 1 2 β β« 1 3 π₯ ππ₯ = β« 2 3 2 + 1 π₯2+1 β 4 1 2 +1 π₯ 1 2 +1 β 1 3 1 + 1 π₯1+1 + πΆ = β« 2 3 3 π₯3 β 4 3 2 π₯ 2 3 β 1 3 2 π₯2 + πΆ = 2 3 . 1 3 π₯3 β 4 1 . 2 3 π₯ 2 3 β 1 3 . 1 2 π₯2 + πΆ = 2 9 π₯3 β 8 3 π₯ 2 3 β 1 6 π₯2 + πΆ 9. β« (β3π₯ + 4)2 ππ₯ = β« (9π₯2 β 24π₯ + 16)ππ₯ = 9 3 π₯3 β 24 2 π₯2 +16π₯ + πΆ = 3π₯3 β 12π₯2 + 16π₯ + πΆ 10. β« (2π₯ + 1)( π₯ β 2) ππ₯ = β« (2π₯2 β 4π₯ + π₯ β 2)ππ₯ = β« (2π₯2 β 3π₯ β 2)ππ₯ = 2 3 π₯3 β 3 2 π₯2 β 2π₯ + πΆ = 2 3 π₯3 β 1 1 2 π₯2 β 2π₯ + πΆ Sifat-sifat : a. β« πππ₯ = π β« ππ₯ β β« ππ(π₯) = π β« π(π₯)ππ₯ b. β« (π( π₯) Β± π( π₯))ππ₯ = β« π( π₯) ππ₯ Β± β« π( π₯) ππ₯ Contoh soal : 1. β« 2π₯2 ππ₯ = 2β« π₯2 ππ₯ = 2. 1 3 π₯3 + πΆ = 2 3 π₯2 + πΆ 2. β« (2π₯2 β 3π₯) ππ₯ = β« 2π₯2 ππ₯ β β« 3π₯ππ₯ = 2β« π₯2 ππ₯ β 3β« π₯ππ₯ = 2. 1 3 π₯3 + πΆ1 β 3. 1 2 π₯2 + πΆ2 = 2 3 π₯3 + πΆ1 β 3 2 π₯2 + πΆ2 = 2 3 π₯3 β 1 1 2 π₯2 + πΆ1 + πΆ2 = 2 3 π₯3 β 1 1 2 π₯2 + πΆ
3.
3 INTEGRAL TENTU Definisi :
β« π( π₯) ππ₯ = [πΉ( π₯)] π ππ π β = πΉ( π) β πΉ(π) Contoh soal : Tentukan integral tentu berikut ini : 1. β« ( π₯ + 2) ππ₯ = [1 2 π₯2 + 2π₯]1 44 1 = ( 1 2 (42 ))+ 2(4)β ( 1 2 (12 ))+ 2(1)) = (8 + 8) β ( 1 2 + 2) = 16 β 2 1 2 = 13 1 2 π ππ‘π’ππ ππ’ππ Penyelesaian dengan cara manual yaitu : π( π₯) = π₯ + 2 π¦ = π₯ + 2 x 1 2 3 4 y 3 4 5 6
4.
4 πΏ = ( π
+ ππ‘ππ ) π‘ 2 = (6 + 3)3 2 = 27 2 = 13 1 2 π ππ‘π’ππ ππ’ππ 2. β« π₯2 ππ₯ = [ 1 3 π₯3 ]1 33 1 = ( 1 3 (32 ))β ( 1 3 (12 )) = ( 1 3 .27 β ( 1 3 .1) = 9 β 1 3 = 27β1 3 = 26 3 = 8 2 3 π ππ‘π’ππ ππ’ππ Penyelesaian dengan cara manual yaitu : π( π₯) = π₯2 π¦ = π₯2 x 1 2 3 0 y 1 4 9 0 1 4 9 1 2 1 3 Tidak ada bentuknya
5.
5 Pertemuan ke-2 Senin, 29
Februari 2016 LUAS DAERAH Kuadran I Kuadran II Kuadran III Kuadran IV
6.
6 -2 -1 2 7 -3 -2 -1 0 1 2 3 4 5 6 7 8 0 1 2
3 4 Contoh soal : 1. ππππ‘π’πππ ππ’ππ πππππβ π¦πππ πππππ‘ππ π πππβ ππ’ππ£π π( π₯) = π₯2 β 2 ππππ π₯ = 0 πππ π₯ = 3 Penyelesaian dengan cara cepat : πΏ = β« (π₯2 β π₯)ππ₯ = [ 1 3 π₯3 β 2π₯]0 3 3 0 = ( 1 3 .33 β 2 .3) β 0 = ( 27 3 β 6) = 9 β 6 = 3 π ππ‘π’ππ ππ’ππ Penyelesaian dengan cara manual : π¦ = π₯2 β π₯ π¦ = π₯2 β 2 0 = π₯2 β 2 2 = π₯2 π₯ = β2 πΏ1 = ββ« ( π₯2 β 2) ππ₯ β2 0 = β [ 1 3 π₯3 β 2π₯] β2 0 = β ( 1 3 (β2)3 β 2(β2))β 0 = β ( 2β2 3 β 2β2) = β ( 2β2 β 6β2 3 ) = β (β 4β2 3 ) = 4β2 3 π ππ‘π’ππ ππ’ππ x 0 1 2 3 y 0 -1 2 7
7.
7 πΏ2 = β
β« ( π₯2 β 2) 3 β2 ππ₯ = [ 1 3 π₯3 β 2π₯] 3 β2 = ( 1 3 (33 )β 2.3) β ( 1 3 (β2 3 ) β 2(β2)) = (9 β 6) β ( 2β2 3 β 2β2) = 3 β 4β2 3 π ππ‘π’ππ ππ’ππ πΏ = πΏ1 + πΏ2 = 4β2 3 + 3 β 4β2 3 = 3 π ππ‘π’ππ ππ’ππ 2. ππππ‘π’πππ ππ’ππ πππππβ π¦πππ πππππ‘ππ π πππβ β« (2π₯3 β 3) ππππ π₯ = 1 πππ π₯ = 3 Penyelesaian dengan cara cepat : πΏ = β« (2π₯3 β 3)ππ₯ = 3 1 [ 2 3 π₯3 β 2π₯] 3 β2 = ( 2 3 (33 ) β 3(3)) β ( 2 3 (13 ) β 3(1)) = ( 2 3 (27) β 9) β ( 2 3 (1)β 3) = (18 β 9) β ( 2 3 β 3) = (18 β 9) β ( 2β9 3 ) = 9 β (β 7 3 ) = 9 7 3 π ππ‘π’ππ ππ’ππ Penyelesaian dengan cara manual : π¦ = 2π₯2 β 3 x 0 1 2 3 y -3 -1 5 15
8.
8 π¦ = 2π₯2 β
3 0 = 2π₯2 β 3 3 = 2π₯2 π₯ = β 3 2 πΏ1 = β« (2π₯2 β 3) ππ₯ 3 β 3 2 = [ 2 3 π₯3 β 3π₯] 3 β 3 2 = ( 2 3 (33 ) β 3(3)) β ( 2 3 (β3 2 3 ) β 3 (β 3 2 )) = ( 2 3 (27)β 9) β (( 2 3 . 3 2 β 3 2 )β 3β 3 2 ) = (18β 9) β (1β 3 2 β 3β 3 2 ) = 9 β (β2β 3 2 ) = 9 + 2β 3 2 π ππ‘π’ππ ππ’ππ πΏ2 = β« (2π₯2 β 3) ππ₯ β 3 2 1 = [ 2 3 π₯3 β 3π₯] β 3 2 1 = ( 2 3 (β3 2 3 ) β 3 (β 3 2 )) β ( 2 3 (13 ) β 3(1)) = ( 2 3 . 3 2 β 3 2 β 3β 3 2 ) β ( 2 3 (1)β 3) 15 5 -1 -3 1 2 3
9.
9 = (1β 3 2 β 3β 3 2 )
β ( 2β9 3 ) = β2β 3 2 β (β 7 3 ) = β2β 3 2 + 7 3 π ππ‘π’ππ ππ’ππ πΏ = πΏ1 + πΏ2 = 9+2β 3 2 + (β2β 3 2 ) + 7 3 = 9 7 3 π ππ‘π’ππ ππ’ππ Contoh soal : πΆπππ ππ’ππ πππππβ π¦πππ πππππ‘ππ π ππ’ππ£π π¦ = π₯2 πππ π¦ = π₯ π¦ = π₯2 π₯ = π₯2 π¦ = π₯ π₯ β π₯2 = 0 π₯( π₯ β 1) = 0 π₯ = 0 , π₯ = 1 π¦ = π₯2 π¦ = π₯ x 0 1 2 1 y 0 1 2 1 x 0 1 2 1 y 0 1 2 1
10.
10 πΏ = β«
(π₯ β π₯2 )ππ₯ = 1 0 [ 1 2 π₯2 β 1 3 π₯3 ] 1 0 = ( 1 2 (12)β ( 1 3 (13 )) β 0 = 1 2 β 1 3 = 3β2 6 = 1 6 π ππ‘π’ππ ππ’ππ
11.
11 Pertemuan ke-3 Senin, 7
Maret 2016 VOLUME BENDA PUTAR π·πππ’π‘ππ ππππππ π π’πππ’ π₯, ππππ: π = π β« π¦2 ππ₯ π 0 ππ‘ππ’ π = π β« π2 (π₯)ππ₯ π 0 π·πππ’π‘ππ ππππππ π π’πππ’ π¦, ππππ: π = π β« π₯2 ππ₯ π π ππ‘ππ’ π = π β« π2 (π¦)ππ₯ π π
12.
12 Contoh soal : Hitunglah
volume benda putar suatu daerah yang dibatasi oleh kurva y = x β 1 dengan sumbu x pada x = 3 Penyelesaian: π¦ = 2π₯2 β 3 π = π β« (π₯ β 1)2 ππ₯ = π β« (π₯2 β 2π₯ + 1)ππ₯ 3 1 3 1 = π β« [ 1 3 π₯3 β π₯2 + π₯] 3 1 3 1 = π(1 3 (33 )β32 +3) β (1 3 (13 )β12 +1) = π(9β9+3) β ( 1 3 β1+1) = π (3 β 1 3 ) = 2 2 3 π π ππ‘π’ππ π£πππ’ππ x 0 1 2 3 4 y -1 0 1 2 3
13.
13 Soal-soal latihan : 1.
Kurva π¦ = π₯2 , π¦ = 0 dengan π¦ = 3 putar dengan sumbu π¦ Jawaban: π = π β« (β π¦)2 ππ¦ = π β« π¦ ππ¦ 3 0 3 0 = π [ 1 2 π¦2 ] 0 3 = π [( 1 2 (32 )) β 0] = π [ 1 2 (9)] = π ( 9 2 ) = 9 2 π = 4 1 2 π π ππ‘π’ππ π£πππ’ππ 2. π¦ = 2π₯ + 2 dengan sumbu π₯ pada π₯ = 0 dan π₯ = 2 Jawaban: y 0 1 2 3 4 x 0 1 β2 β3 2 y 0 1 2 3 x 2 4 6 8
14.
14 π = π
β« (2π₯ + 2)2 ππ₯ = π β« (4π₯2 + 8π₯ + 4)ππ₯ 2 0 2 0 = π [ 4 3 π₯3 + 4π₯2 + 4π₯] 0 2 = π [( 4 3 (23 )+4(22 )4(2)) β 0] = π [( 4 3 (8)+4(4)+8) β 0] = π ( 32 3 +16+8) = π ( 32+48+24 3 ) = π(104 3 ) = 104 3 π = 32 3 π π ππ‘π’ππ π£πππ’ππ 3. π¦ = 3π₯ β 2, π¦ = 0 dan π¦ = 2 Jawaban: π¦ = 3π₯ β 2 π¦ + 2 = 3π₯ π₯ = π¦+2 3 y 0 1 2 3 x 2 3 1 4 3 5 3
15.
15 π = π
β« ( π¦+2 3 ) 2 2 0 ππ¦ = π β« ( π¦2 +4π¦+4 3 ) 2 0 ππ¦ = π β« ( 1 9 π¦2+ 4 9 π¦+ 4 9 ) 2 0 ππ¦ = π [ 1 9 3 π¦3 + 4 9 3 π¦2 + 4 9 π¦] 0 2 = π [ 1 9 . 1 3 π¦3 + 4 9 . 1 2 π¦2 + 4 9 π¦] 0 2 = π [ 1 27 π¦3 + 4 18 π¦2 + 4 9 π¦] 0 2 = π [( 1 27 (23 )+ 4 18 (22 ) + 4 9 (2))β 0] = π [ 1 27 (8)+ 4 18 (4) + 4 9 (2)] = π [ 8 27 + 16 18 + 8 9 ] = π [ 16+48+48 54 ] = π [ 112 54 ] = 112 54 π = 2 4 54 π π ππ‘π’ππ π£πππ’ππ
16.
16 4. π¦ =
π₯2 + 1, π¦ = 1 dan π¦ = 2 Jawaban: π¦ = π₯2 + 1 π¦ β 1 = π₯2 π₯ = βπ¦ β 1 π = π β« (β π¦β1) 2 2 1 ππ¦ = π β« ( π¦β1) 2 1 ππ¦ = π [ 1 2 π¦2 β π¦] 1 2 = π [( 1 2 (22 ) β 2) β ( 1 2 (12 )β 1)] = π [( 1 2 (4) β 2) β ( 1 2 (1)β 1)] = π [(2β 2) β (β 1 2 )] = π [0 β (β 1 2 )] = 1 2 π π ππ‘π’ππ π£πππ’ππ y 1 2 3 x 0 1 β2
17.
17 Pertemuan ke-4 Senin, 14
Maret 2016 VOLUME BENDA PUTAR DI ANTARA DUA KURVA π·πππ’π‘ππ ππππππ π π’πππ’ π₯, ππππ: π = π β« π2( π₯) β π2( π₯) ππ₯ ππ‘ππ’ π = π β«( π¦1 2 β π¦2 2) ππ₯ π·πππ’π‘ππ ππππππ π π’πππ’ π¦, ππππ: π = π β« π2( π¦) β π2( π¦) ππ¦ ππ‘ππ’ π = π β«( π₯1 2 β π₯2 2) ππ¦ Contoh Soal: 1. Hitung luas daerah yang dibatasi oleh kurva π¦ = π₯ , dan π¦ = 3π₯ β π₯2 jika bidang diputar pada sumbu x Jawaban: π¦ = π₯ π¦ = 3π₯ β π₯2 π₯ = 3π₯ β π₯2 π₯2 + π₯ β 3π₯ = 0 π₯2 β 2π₯ = 0 π¦ = π₯ x 0 1 2 y 0 1 2 π¦ = 3π₯ β π₯2 x 0 1 2 y 0 2 2
18.
18 π₯( π₯ β
2) = 0 π₯ = 0 β π₯ β 2 = 0 π₯ = 0 β¨ π₯ = 2 π = π β« ((3π₯ β π₯2 )2 β π₯2) ππ₯ 2 0 = π β« (9π₯2 β 6π₯4 + π₯3 + π₯2) ππ₯ 2 0 = π β« (8π₯2 β 6π₯3 + π₯4) 2 0 = π [ 8 3 π₯3 β 6 4 π₯4 + 1 5 π₯5 ] 2 0 = π [ 8 3 (2)3 β 6 4 (2)4 + 1 5 (2)5 ] β 0 = π [ 8 3 (8)β 6 4 (16) + 1 5 (32)] = π [ 64 3 β 96 4 + 32 5 ] = π [ 1280 β 1440 + 384 60 ] = π [ 224 60 ] = π 56 15 = 3 11 15 π π ππ‘π’ππ π£πππ’ππ
19.
19 Pertemuan ke-5 Senin, 21
Maret 2016 INTEGRAL SUBSTITUSI Substitusi = menggantikan 1. Misal: Tentukan β« ( π₯3 + 6π₯)5(6π₯2 + 2) ππ₯ Jawaban: Misal π’ = π₯3 + 6π₯ ππ’ ππ₯ = 3π₯2 + 6 ππ’ = 3π₯2 + 6 ππ₯ 2ππ’ = 2(3π₯2 + 6) ππ₯ 2ππ’ = 6π₯2 + 12 ππ₯ β΄ β« ( π₯3 + 6π₯)5(6π₯2 + 12) ππ₯ β« π’5 . 2ππ’ = 2β« π’5 ππ’ = 2. 1 6 π’6 + πΆ = 2 1 6 ( π₯3 + 6π₯)6 + πΆ = 1 3 ( π₯3 + 6π₯)6 + πΆ 2. Hitung β« ( π₯2 + 4)10 π₯ ππ₯ Jawaban: Misal π’ = π₯2 + 4 ππ’ ππ₯ = 2π₯ ππ’ = 2π₯ ππ₯ π₯ ππ₯ = ππ’ 2 π₯ ππ₯ = 1 2 ππ’ NOTASI SIGMA (β)sigma = jumlah 1. 12 + 22 + 33 + β¦β¦ + 1002 = β π2100 π=1 2. π1 + π2 + π3 + β¦β¦ π π = β πππ π=1 β΄ β« ( π₯2 + 4)10 π₯ ππ₯ = β« π’10 . 1 2 ππ’ = 1 2 β« π’10 ππ’ = 1 2 . 1 11 π’11 + πΆ = 1 22 ( π₯2 + 4)11 + πΆ
20.
20 Sifat-sifat 1. β πΆππ
= πΆ β πππ π=1 π π=1 2. β ( ππ Β± ππ) = β πππ π=1 Β± β πππ π=1 π π=1 3. β πΆπ = π1 + π2 + π3 + β¦β¦ + π = π. πΆπ π=1 β πΆ = π. πΆ π π=1 Soal-soal latihan. Tentukan : 1. β πΎ πΎ2+1 = β―4 πΎ=1 Jawaban: ( 1 12 + 1 ) + ( 2 22 + 1 ) + ( 3 32 + 1 ) + ( 4 42 + 1 ) = 1 2 + 2 5 + 3 10 + 4 17 = 85 + 68 + 51 + 40 170 = 244 170 = 1 74 170 2. β (β4)100 π=1 = β― Jawaban: 100(-4)=-400 3. Jika β ππ = 60100 π=1 dan β ππ = 11100 π=1 . Hitunglah β (2ππ β 3ππ + 4)100 π=1 Jawaban: β 2 ππ β β3 ππ + β 4 100 π=1 100 π=1 100 π=1 = 2β ππ β 3β ππ + β 4 100 π=1 100 π=1 100 π=1 = 2(60)β 3(11)+ 100(4) = 120 β 33 + 400 = 487 JUMLAH KHUSUS 1. β π = 1 + 2 + 3 + β― + π = π( π+1) 2 π π=1 2. β π2 = 12 + 22 + 32 + β― + π2 = π( π+1)(2π+1) 6 π π=1
21.
21 3. β π3 =
13 + 22 + 33 + β― + π3 = ( π( π+1) 2 ) 2 π π=1 4. β π4 = 14π π=1 + 24 + 34 + β― + π4 = π( π+1)(6π3 +9π2 +πβ1) 30 Hitunglah β 2π( π β 5)10 π=1 jawaban : β 2π( π β 5)10 π=1 = β 2π2 β 10π10 π=1 = β 2π2 β β 10π10 π=1 10 π=1 = β π210 π=1 β β 10π10 π=1 = 2 (10(10+1)(2(10)+1) 6 = 2 (110 .21) 6 = 2 2310 6 = 2(385)
22.
22 Pertemuan ke-6 Senin, 28
Maret 2016 INTEGRAL LIPAT 2 Integral lipat dua ini, bisa dirumuskan sebagai berikut: 1. β¬ π( π₯, π¦) ππ΄ = β« π΄( π¦) π2 π2 ππ¦ π π 2. β¬ π(π₯, π¦) π π ππ΄ = β« [β« π( π₯, π¦) ππ₯ π2 π2 ] ππ¦ π2 π1 3. β¬ π( π₯, π¦) ππ΄ = β« [β« π( π₯, π¦) ππ¦ π2 π2 ] ππ₯ π2 π1 π π Contoh soal : 1. Hitung β¬ (2π₯ + 3π¦) ππ΄, π π R daerah π₯ππ¦ yang hanya memuat titik-titik ( π₯, π¦) dengan batas 1 β€ π₯ β€ 2 dan 0 β€ π¦ β€ 3 Jawaban: Diketahui bahwa π1 = 1, π1 = 2 dan π2 = 0, π2 = 3 β¬(2π₯ + 3π¦) ππ΄ = β« β«(2π₯ + 3π¦) ππ₯ ππ¦ 2 1 3 0 π π = β« [β«(2π₯ + 3π¦ 2 1 )ππ₯] 3 0 ππ¦ = β«[ π₯2 + 3π₯π¦] 2 1 3 0 ππ¦
23.
23 = β«[((2)2 + 3(2)
π¦)β ((1)2 + 3(1) π¦)] ππ¦ 3 0 = β«(4 + 6π¦ β 1 β 3π¦) ππ¦ 3 0 = β«(3π¦ + 3) ππ¦ 3 0 = [ 3 2 π¦2 + 3π¦] 3 0 = [ 3 2 (3)2 + 3(3)] β 0 = 3 2 (9)+ 9 β 0 = 27 2 + 18 2 = 45 2 = 22 1 2 β¬(2π₯ + 3π¦) ππ΄ = β« β«(2π₯ + 3π¦) ππ¦ ππ₯ 3 0 2 1 π π = β« [β«(2π₯ + 3π¦) ππ¦ 3 0 ] ππ₯ 2 1 = β« [2π₯π¦ + 3 2 π¦2 ] 3 0 ππ₯ 2 1 = β« [2π₯(3)+ 3 2 (3)2 ] β 0 ππ₯ 2 1 = β« 6π₯ + 27 2 ππ₯ 2 1 = [3π₯2 + 27 2 π₯] 2 1 = [3(2)2 + 27 2 (2)] β [3(1)2 + 27 2 (1)] = [3(4) + 54 2 ] β [3 + 27 2 ]
24.
24 = [12 +
27] β [ 6 2 + 27 2 ] = 39 β [ 33 2 ] = 78 2 β 33 2 = 45 2 = 22 1 2 Latihan soal: 1. Hitungβ« β« ( π₯2 + π¦) ππ₯ ππ¦ 4 0 8 0 Jawaban: β¬( π₯2 + π¦) ππ΄ = β«β«( π₯2 + π¦) ππ₯ ππ¦ 4 0 8 0 π π = β« [β« ( π₯2 + π¦) ππ₯ 4 0 ] ππ¦ 8 0 = β«[ 1 3 π₯3 + π₯π¦] 4 0 ππ¦ 8 0 = β«[ 1 3 (4)3 + (4) π¦] β [ 1 3 (0)3 β (0) π¦] ππ¦ 8 0 = β«[ 1 3 (64) + 4π¦] β 0 ππ¦ 8 0 = β«[ 64 3 + 4π¦] ππ¦ 8 0 = [ 64 3 π¦ + 2π¦2 ] 8 0 = [ 64 3 (8) + 2(8)2 β (0)] = 512 3 + 128 = 512 + 384 3 = 896 3 = 298 2 3
25.
25 2. β« β«
π₯ π₯ 0 π¦3 ππ¦ ππ₯ 2 1 Jawaban: β¬( π₯ + π¦3) ππ΄ = β« β«( π₯ + π¦3) ππ¦ ππ₯ π₯ 0 2 1 π π = β«[β«( π₯ + π¦3) ππ¦ π₯ 0 ] ππ₯ 2 1 = β«[ π₯π¦ + π¦3] π₯ 0 ππ₯ 2 1 = β«[ π₯( π₯) + π₯3] β 0 ππ₯ 2 1 = β«( π₯2 + π₯3) ππ₯ 2 1 = [22 + 23] β [12 + 13] = (4 + 8) β (1 + 1) = 12 β 2 = 10 3. β« β« ππ₯ ππ¦ π¦2 0 1 0 Jawaban: β« β« ππ₯ ππ¦ π¦2 0 1 0 = β«[β« (1) ππ₯ π¦2 0 ] ππ¦ 1 0 = β«[ π₯] π¦2 0 1 0 ππ¦ = β« π¦2 ππ¦ 1 0 = [ 1 3 π¦3 ] 1 0 = [ 1 3 (1)3 β 1 3 (0)3 ] = 1 3
26.
26 4. β¬ (
π₯π¦ + π¦2) ππ΄, π = ( π₯, π¦):0 β€ π₯ β€ 2 ,1 β€ π¦ β€ 3 π π Jawaban: Diketahui bahwa π1 = 0, π1 = 2 dan π2 = 1, π2 = 3 β¬( π₯π¦ + π¦2) ππ΄ = β«β«( π₯π¦ + π¦2) ππ₯ ππ¦ 2 0 3 1 π π = β« [β«( π₯π¦ + π¦2) ππ₯ 2 0 ] ππ¦ 3 1 = β«[ π₯2 π¦ + π¦2] 2 0 ππ¦ 3 1 = β«[22 π¦ + 2π¦2] β [02 π¦ + 0π¦2] ππ¦ 3 1 = β«[4π¦ + 2π¦2] β [ π¦ + π¦2] ππ¦ 3 1 = β«(3π¦2 β 3π¦) ππ¦ 3 1 = [ 3 3 π¦3 β 3 2 π¦2 ] 3 1 = [π¦3 β 3 2 π¦2 ] 3 1 = [33 β 3 2 (32 )] β [13 β 3 2 (12 )] = [27 β 3 2 (9)]β [1 β 3 2 (1)] = [27 β 27 2 ] β [1 β 3 2 ] = [ 54β27 2 ] β [ 2β3 2 ] = [ 27 2 ] β [ β1 2 ] = 27 2 + 1 2 = 28 2 = 14
Download