際際滷

際際滷Share a Scribd company logo
Regresi linear sederhana
When do we use regression? Dont  use it to determine the strength of association between to variables. Do  use it if you want to predict the value of  Y  given  X . X 1 X 2 Korelasi  X Y Regresi
Regression or correlation? Correlation : degree of association between two variables X and Y;  no causal relationship assumed  ! Regression : to predict the value of the dependent variable if the independent variable were changed;  causal relationship assumed !
Model regresi  sederhana Semua model regresi sederhana terdiri dari 2 parameter; intersep ( 留 ) dan slope ( 硫 ). Model taksiran Tiap psg pengamatan memenuhi 硫  =  Y  X (slope) sisaan X  X  Y  (intercept)  i X i Y i Observed Expected
Dugaan slope  硫   adalah b yaitu : Dugaan intersp  留   adalah a yaitu : Koefisien Regression dan correlation correlation  r  adalah : sehingga, b  =  r   jk  X  dan  Y  memiliki varians sama and if  b  = 0 maka  r  = 0.
Hypothesis testing : testing model parameters Uji Serentak  (ANOVA) F  =  MS R / MS e   > F 1,,n - 2 Uji Parsial  Uji tiap  hypothesis dgn  t -test: Note: hipotesis  2-arah  ! Y  Y H 01 :    = 0 Y  = 0 X Y  H 02 : b = 0 X Y  Observed Expected
Asumsi Residual Residuals are independent and normally distributed. The variance of the residuals is equal for all  X  (homoscedasticity). The relationship between  Y  and  X  is linear. There is no measurement error on  X  (Model I regression).
Pemeriksaan asumsi residual Analisis residual I: independence Plot residuals vs dugaan, lihat bentuk polanya. Lakukan  ACF plot. Estimate Residual
Pemeriksaan asumsi residual Plot residuals against estimates; look for patterns. Do normal probability plot. Check with Lilliefors test. Analisis residual II: NORMALITY NEDs Residual Normal Non-normal Residual Estimate
Plot residuals against estimates; look for patterns. Check with Levenes test by grouping  Y s into several classes. Pemeriksaan asumsi residual Analisis residual III: homokedastisitas Estimate Residual Group 1 Group 2 Group 3 Residual Estimate
Plot residuals against estimates; look for patterns. Pemeriksaan asumsi residual Analisis residual IV: linieritas Residual X Y Estimate
Apa yang harus dilakukan jika aasumsi tidak terpenuhi ? Try transforming the data, but remember: (1) for some data, no transformation will  work;  (2) finding an appropriate transformation  may not be easy. Use non-linear regression.
Transformasi dalam regresi  0  200  400  600 1.2 2.4 3.6 4.8 6.0 7.2 Length (mm) Weight (kg) 10  100  1000 0.001 0.01 0.1 1.0 8.0 Length (mm; log scale) Weight (kg; log scale) Weight versus length in the beetle  Scorpaenichthys marmoratus
Transformasi dalam regresi  10  20 50 100 150 Chirps/min o C 10  20 40 80 120 160 Chirps/min (log scale)
Transformasi dalam regresi  0 10 20 30 40 50 60 70 Relative brightness (times) 0 1 2 3 4 5 6 7 Millivolts Electrical resistance as a function of illumination in cephalopod eyes. 70 1 2 5 10 20 50 Relative brightness (times) in log scale 0 1 2 3 4 5 6 7 Millivolts

More Related Content

Regresi Linear Sederhana

  • 2. When do we use regression? Dont use it to determine the strength of association between to variables. Do use it if you want to predict the value of Y given X . X 1 X 2 Korelasi X Y Regresi
  • 3. Regression or correlation? Correlation : degree of association between two variables X and Y; no causal relationship assumed ! Regression : to predict the value of the dependent variable if the independent variable were changed; causal relationship assumed !
  • 4. Model regresi sederhana Semua model regresi sederhana terdiri dari 2 parameter; intersep ( 留 ) dan slope ( 硫 ). Model taksiran Tiap psg pengamatan memenuhi 硫 = Y X (slope) sisaan X X Y (intercept) i X i Y i Observed Expected
  • 5. Dugaan slope 硫 adalah b yaitu : Dugaan intersp 留 adalah a yaitu : Koefisien Regression dan correlation correlation r adalah : sehingga, b = r jk X dan Y memiliki varians sama and if b = 0 maka r = 0.
  • 6. Hypothesis testing : testing model parameters Uji Serentak (ANOVA) F = MS R / MS e > F 1,,n - 2 Uji Parsial Uji tiap hypothesis dgn t -test: Note: hipotesis 2-arah ! Y Y H 01 : = 0 Y = 0 X Y H 02 : b = 0 X Y Observed Expected
  • 7. Asumsi Residual Residuals are independent and normally distributed. The variance of the residuals is equal for all X (homoscedasticity). The relationship between Y and X is linear. There is no measurement error on X (Model I regression).
  • 8. Pemeriksaan asumsi residual Analisis residual I: independence Plot residuals vs dugaan, lihat bentuk polanya. Lakukan ACF plot. Estimate Residual
  • 9. Pemeriksaan asumsi residual Plot residuals against estimates; look for patterns. Do normal probability plot. Check with Lilliefors test. Analisis residual II: NORMALITY NEDs Residual Normal Non-normal Residual Estimate
  • 10. Plot residuals against estimates; look for patterns. Check with Levenes test by grouping Y s into several classes. Pemeriksaan asumsi residual Analisis residual III: homokedastisitas Estimate Residual Group 1 Group 2 Group 3 Residual Estimate
  • 11. Plot residuals against estimates; look for patterns. Pemeriksaan asumsi residual Analisis residual IV: linieritas Residual X Y Estimate
  • 12. Apa yang harus dilakukan jika aasumsi tidak terpenuhi ? Try transforming the data, but remember: (1) for some data, no transformation will work; (2) finding an appropriate transformation may not be easy. Use non-linear regression.
  • 13. Transformasi dalam regresi 0 200 400 600 1.2 2.4 3.6 4.8 6.0 7.2 Length (mm) Weight (kg) 10 100 1000 0.001 0.01 0.1 1.0 8.0 Length (mm; log scale) Weight (kg; log scale) Weight versus length in the beetle Scorpaenichthys marmoratus
  • 14. Transformasi dalam regresi 10 20 50 100 150 Chirps/min o C 10 20 40 80 120 160 Chirps/min (log scale)
  • 15. Transformasi dalam regresi 0 10 20 30 40 50 60 70 Relative brightness (times) 0 1 2 3 4 5 6 7 Millivolts Electrical resistance as a function of illumination in cephalopod eyes. 70 1 2 5 10 20 50 Relative brightness (times) in log scale 0 1 2 3 4 5 6 7 Millivolts