際際滷

際際滷Share a Scribd company logo
Regression Basic
Maximum Likelihood Estimator(MLE)
Jinseob Kim
July 15, 2015
Jinseob Kim Regression Basic July 15, 2015 1 / 26
Introduction
Contents
1 Introduction
2 Regression Review
Basic linear regression
MLE 譯殊 讌
3 Logistic Regression
4 Poisson Regression
Jinseob Kim Regression Basic July 15, 2015 2 / 26
Introduction
螳 
Y 螳 一?
1 讌讌 一 VS 螳讌一(Count data)
2 一: 蠏覿!!!!!!  朱 蠏覿
3 Count: 覦 ,   etc.. : , 螳襷, 危 
Y 螳 覯譯狩?
1 2覯譯 VS 3覯譯殊伎
2 2覯譯 : 襦讌ろ
3 3覯譯殊伎 : 襦觜 ..
Y 螳 襴曙 ?: 覦覲旧検, 覃磯覯 .. 覲瑚 
Jinseob Kim Regression Basic July 15, 2015 3 / 26
Introduction
覲 VS る
覲(univariate) VS る(multivariate)
1 Association 朱 
1 るジ 蟆 螻朱ゼ 覲伎  Association 螳?
Jinseob Kim Regression Basic July 15, 2015 4 / 26
Regression Review
Contents
1 Introduction
2 Regression Review
Basic linear regression
MLE 譯殊 讌
3 Logistic Regression
4 Poisson Regression
Jinseob Kim Regression Basic July 15, 2015 5 / 26
Regression Review Basic linear regression
Remind
硫 estimation in linear regression
1 Ordinary Least Square(OLS): semi-parametric
2 Maximum Likelihood Estimator(MLE): parametric
覿覿 蠏覿 豢豺
Jinseob Kim Regression Basic July 15, 2015 6 / 26
Regression Review Basic linear regression
Least Square(豕螻焔)
螻燕 豕襦: y 蠏煙  螳 .
Figure: OLS Fitting
Jinseob Kim Regression Basic July 15, 2015 7 / 26
Regression Review Basic linear regression
Likelihood??
螳ル(likelihood) VS 襯(probability)
Discrete: 螳ル = 襯 - 譯殊  1 襯 1
6
Continuous: 螳ル != 襯 - 01    觸  0.7
襯 0...
Jinseob Kim Regression Basic July 15, 2015 8 / 26
Regression Review Basic linear regression
Maximum likelihood estimator(MLE)
豕螳ル豢: 1, 揃 揃 揃 , n 襦 襴曙企狩.
1 螳螳 螳ル襯 蟲.
2 螳ル襯 覿 螻燕覃 豌 蟇伎 螳ル (襴曙企蟾)
3 螳ル襯 豕襦  硫襯 蟲.
讀, 蠏覿 螳  螳螻  一危郁  螳レ煙 豕襦  硫
襯 蟲.
Jinseob Kim Regression Basic July 15, 2015 9 / 26
Regression Review Basic linear regression
MLE: 豕螳ル豢
一危郁 殊企 螳レ煙 豕襦: y 覿螳.
豕螻煙螻 
Jinseob Kim Regression Basic July 15, 2015 10 / 26
Regression Review MLE 譯殊 讌
LRT? Ward? score?
Likelihood Ratio Test VS Ward test VS score test
1 糾   覦覯.
2 螳ル觜蟲 VS 覯螳觜蟲 VS 蠍一瑚鍵觜蟲/
Jinseob Kim Regression Basic July 15, 2015 11 / 26
Regression Review MLE 譯殊 讌
觜蟲
Figure: Comparison
Jinseob Kim Regression Basic July 15, 2015 12 / 26
Regression Review MLE 譯殊 讌
AIC
磯Μ螳 蟲 覈 螳ル襯 L企 覃.
1 AIC = 2  log(L) + 2  k
2 k: る覲 螳(焔, , 磯...)
3 襦 譬 覈!!!
螳ル螳  覈 螻襯願讌襷.. る覲 覓 襷朱 !!!
Jinseob Kim Regression Basic July 15, 2015 13 / 26
Regression Review MLE 譯殊 讌
Examples
## Loading required package: splines
##
## Call:
## glm(formula = nonacc ~ meanpm10 + meanso2 + meanno2 + meanco +
## maxo3 + meantemp + meanhumi + meanpress, data = mort)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -81.089 -15.398 -4.053 11.979 117.643
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 782.542027 37.581693 20.822 < 2e-16 ***
## meanpm10 0.047872 0.008661 5.528 3.29e-08 ***
## meanso2 -2.036635 0.087065 -23.392 < 2e-16 ***
## meanno2 1.758609 0.021575 81.513 < 2e-16 ***
## meanco -2.844671 0.078291 -36.335 < 2e-16 ***
## maxo3 -0.252572 0.013237 -19.081 < 2e-16 ***
## meantemp -0.373984 0.032410 -11.539 < 2e-16 ***
## meanhumi -0.202591 0.014763 -13.723 < 2e-16 ***
## meanpress -0.725117 0.036518 -19.856 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 530.2808)
##
## Null deviance: 13933228 on 17354 degrees of freedom
## Residual deviance: 9198250 on 17346 degrees of freedom
## (207 observations deleted due to missingness)
## AIC: 158137
## Jinseob Kim Regression Basic July 15, 2015 14 / 26
Logistic Regression
Contents
1 Introduction
2 Regression Review
Basic linear regression
MLE 譯殊 讌
3 Logistic Regression
4 Poisson Regression
Jinseob Kim Regression Basic July 15, 2015 15 / 26
Logistic Regression
Logistic function: MLE
Case-control study: Y 螳 0 or 1
Figure: Fitting Logistic Function
Jinseob Kim Regression Basic July 15, 2015 16 / 26
Logistic Regression
Model
Log(
pi
1  pi
) = 硫0 + 硫1 揃 xi1
pi = P(Yi = 1) =
exp(硫0 + 硫1 揃 xi1)
1 + exp(硫0 + 硫1 揃 xi1)
P(Yi = 0) =
1
1 + exp(硫0 + 硫1 揃 xi1)
P(Yi = yi ) = (
exp(硫0 + 硫1 揃 xi1)
1 + exp(硫0 + 硫1 揃 xi1)
)yi
(
1
1 + exp(硫0 + 硫1 揃 xi1)
)1yi
Jinseob Kim Regression Basic July 15, 2015 17 / 26
Logistic Regression
Likelihood
Likelihood=
n
i=1
P(Yi = yi ) =
n
i=1
(
exp(硫0 + 硫1 揃 xi1)
1 + exp(硫0 + 硫1 揃 xi1)
)yi
(
1
1 + exp(硫0 + 硫1 揃 xi1)
)1yi
螳碁襦 螳ル(一危一   襯) .
蠏瑚れ  螻燕覃 Likelihood
願 豕襦  硫襯 蟲 蟆.
Case Control企 磯磯 Likelihood襯 蟲.
Jinseob Kim Regression Basic July 15, 2015 18 / 26
Logistic Regression
伎
Log(
pi
1  pi
) = 硫0 + 硫1 揃 xi1
x1 讀螳襦 Log( p
1p ) 硫1襷 讀螳.
p
1p  exp(硫1)覦郁 .
Odds Ratio = exp(硫1)
Jinseob Kim Regression Basic July 15, 2015 19 / 26
Poisson Regression
Contents
1 Introduction
2 Regression Review
Basic linear regression
MLE 譯殊 讌
3 Logistic Regression
4 Poisson Regression
Jinseob Kim Regression Basic July 15, 2015 20 / 26
Poisson Regression
螳讌 一: 蠏覿   螳?
覦, 襷 : 一
襯 企 る 企欧碁朱 蠏碁 蠏覿 螳企 覓企逢.
覓 企欧碁朱??
Jinseob Kim Regression Basic July 15, 2015 21 / 26
Poisson Regression
危覿 & 蠏覿 & °
危覿: 覦襯 p 殊 n覯 .
蠏覿: n 覓危  危覿
°: n  , p  0,  np  了 朱
n!
(n  k)!k!
pk
(1  p)nk
 e了 了k
k!
Jinseob Kim Regression Basic July 15, 2015 22 / 26
Poisson Regression
Figure: Poisson distribution
Jinseob Kim Regression Basic July 15, 2015 23 / 26
Poisson Regression
Poisson regression model
log(E(Y | x)) = 留 + 硫 x
讀, log(蠏覦)螻 蟯螻螳 . 
E(Y | x) = e留+硫 x
Log(RR) = exp(硫)
MLE豢 https://en.wikipedia.org/wiki/Poisson_regression
谿語^
Jinseob Kim Regression Basic July 15, 2015 24 / 26
Poisson Regression
Examples
##
## Call:
## glm(formula = nonacc ~ meanpm10 + meanso2 + meanno2 + meanco +
## maxo3 + meantemp + meanhumi + meanpress, family = poisson,
## data = mort)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -16.7854 -2.7891 -0.8845 1.6723 16.4589
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.160e+01 2.670e-01 80.90 <2e-16 ***
## meanpm10 1.318e-03 5.916e-05 22.28 <2e-16 ***
## meanso2 -4.389e-02 6.286e-04 -69.82 <2e-16 ***
## meanno2 4.168e-02 1.379e-04 302.27 <2e-16 ***
## meanco -8.808e-02 6.387e-04 -137.90 <2e-16 ***
## maxo3 -6.130e-03 9.672e-05 -63.38 <2e-16 ***
## meantemp -1.170e-02 2.388e-04 -48.99 <2e-16 ***
## meanhumi -4.194e-03 1.042e-04 -40.25 <2e-16 ***
## meanpress -1.748e-02 2.596e-04 -67.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 328676 on 17354 degrees of freedom
## Residual deviance: 210104 on 17346 degrees of freedom
## (207 observations deleted due to missingness)
## AIC: 300091
##
## Number of Fisher Scoring iterations: 5Jinseob Kim Regression Basic July 15, 2015 25 / 26
Poisson Regression
END
Email : secondmath85@gmail.com
O鍖ce: (02)880-2473
H.P: 010-9192-5385
Jinseob Kim Regression Basic July 15, 2015 26 / 26

More Related Content

Regression Basic : MLE

  • 1. Regression Basic Maximum Likelihood Estimator(MLE) Jinseob Kim July 15, 2015 Jinseob Kim Regression Basic July 15, 2015 1 / 26
  • 2. Introduction Contents 1 Introduction 2 Regression Review Basic linear regression MLE 譯殊 讌 3 Logistic Regression 4 Poisson Regression Jinseob Kim Regression Basic July 15, 2015 2 / 26
  • 3. Introduction 螳 Y 螳 一? 1 讌讌 一 VS 螳讌一(Count data) 2 一: 蠏覿!!!!!! 朱 蠏覿 3 Count: 覦 , etc.. : , 螳襷, 危 Y 螳 覯譯狩? 1 2覯譯 VS 3覯譯殊伎 2 2覯譯 : 襦讌ろ 3 3覯譯殊伎 : 襦觜 .. Y 螳 襴曙 ?: 覦覲旧検, 覃磯覯 .. 覲瑚 Jinseob Kim Regression Basic July 15, 2015 3 / 26
  • 4. Introduction 覲 VS る 覲(univariate) VS る(multivariate) 1 Association 朱 1 るジ 蟆 螻朱ゼ 覲伎 Association 螳? Jinseob Kim Regression Basic July 15, 2015 4 / 26
  • 5. Regression Review Contents 1 Introduction 2 Regression Review Basic linear regression MLE 譯殊 讌 3 Logistic Regression 4 Poisson Regression Jinseob Kim Regression Basic July 15, 2015 5 / 26
  • 6. Regression Review Basic linear regression Remind 硫 estimation in linear regression 1 Ordinary Least Square(OLS): semi-parametric 2 Maximum Likelihood Estimator(MLE): parametric 覿覿 蠏覿 豢豺 Jinseob Kim Regression Basic July 15, 2015 6 / 26
  • 7. Regression Review Basic linear regression Least Square(豕螻焔) 螻燕 豕襦: y 蠏煙 螳 . Figure: OLS Fitting Jinseob Kim Regression Basic July 15, 2015 7 / 26
  • 8. Regression Review Basic linear regression Likelihood?? 螳ル(likelihood) VS 襯(probability) Discrete: 螳ル = 襯 - 譯殊 1 襯 1 6 Continuous: 螳ル != 襯 - 01 觸 0.7 襯 0... Jinseob Kim Regression Basic July 15, 2015 8 / 26
  • 9. Regression Review Basic linear regression Maximum likelihood estimator(MLE) 豕螳ル豢: 1, 揃 揃 揃 , n 襦 襴曙企狩. 1 螳螳 螳ル襯 蟲. 2 螳ル襯 覿 螻燕覃 豌 蟇伎 螳ル (襴曙企蟾) 3 螳ル襯 豕襦 硫襯 蟲. 讀, 蠏覿 螳 螳螻 一危郁 螳レ煙 豕襦 硫 襯 蟲. Jinseob Kim Regression Basic July 15, 2015 9 / 26
  • 10. Regression Review Basic linear regression MLE: 豕螳ル豢 一危郁 殊企 螳レ煙 豕襦: y 覿螳. 豕螻煙螻 Jinseob Kim Regression Basic July 15, 2015 10 / 26
  • 11. Regression Review MLE 譯殊 讌 LRT? Ward? score? Likelihood Ratio Test VS Ward test VS score test 1 糾 覦覯. 2 螳ル觜蟲 VS 覯螳觜蟲 VS 蠍一瑚鍵觜蟲/ Jinseob Kim Regression Basic July 15, 2015 11 / 26
  • 12. Regression Review MLE 譯殊 讌 觜蟲 Figure: Comparison Jinseob Kim Regression Basic July 15, 2015 12 / 26
  • 13. Regression Review MLE 譯殊 讌 AIC 磯Μ螳 蟲 覈 螳ル襯 L企 覃. 1 AIC = 2 log(L) + 2 k 2 k: る覲 螳(焔, , 磯...) 3 襦 譬 覈!!! 螳ル螳 覈 螻襯願讌襷.. る覲 覓 襷朱 !!! Jinseob Kim Regression Basic July 15, 2015 13 / 26
  • 14. Regression Review MLE 譯殊 讌 Examples ## Loading required package: splines ## ## Call: ## glm(formula = nonacc ~ meanpm10 + meanso2 + meanno2 + meanco + ## maxo3 + meantemp + meanhumi + meanpress, data = mort) ## ## Deviance Residuals: ## Min 1Q Median 3Q Max ## -81.089 -15.398 -4.053 11.979 117.643 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 782.542027 37.581693 20.822 < 2e-16 *** ## meanpm10 0.047872 0.008661 5.528 3.29e-08 *** ## meanso2 -2.036635 0.087065 -23.392 < 2e-16 *** ## meanno2 1.758609 0.021575 81.513 < 2e-16 *** ## meanco -2.844671 0.078291 -36.335 < 2e-16 *** ## maxo3 -0.252572 0.013237 -19.081 < 2e-16 *** ## meantemp -0.373984 0.032410 -11.539 < 2e-16 *** ## meanhumi -0.202591 0.014763 -13.723 < 2e-16 *** ## meanpress -0.725117 0.036518 -19.856 < 2e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## (Dispersion parameter for gaussian family taken to be 530.2808) ## ## Null deviance: 13933228 on 17354 degrees of freedom ## Residual deviance: 9198250 on 17346 degrees of freedom ## (207 observations deleted due to missingness) ## AIC: 158137 ## Jinseob Kim Regression Basic July 15, 2015 14 / 26
  • 15. Logistic Regression Contents 1 Introduction 2 Regression Review Basic linear regression MLE 譯殊 讌 3 Logistic Regression 4 Poisson Regression Jinseob Kim Regression Basic July 15, 2015 15 / 26
  • 16. Logistic Regression Logistic function: MLE Case-control study: Y 螳 0 or 1 Figure: Fitting Logistic Function Jinseob Kim Regression Basic July 15, 2015 16 / 26
  • 17. Logistic Regression Model Log( pi 1 pi ) = 硫0 + 硫1 揃 xi1 pi = P(Yi = 1) = exp(硫0 + 硫1 揃 xi1) 1 + exp(硫0 + 硫1 揃 xi1) P(Yi = 0) = 1 1 + exp(硫0 + 硫1 揃 xi1) P(Yi = yi ) = ( exp(硫0 + 硫1 揃 xi1) 1 + exp(硫0 + 硫1 揃 xi1) )yi ( 1 1 + exp(硫0 + 硫1 揃 xi1) )1yi Jinseob Kim Regression Basic July 15, 2015 17 / 26
  • 18. Logistic Regression Likelihood Likelihood= n i=1 P(Yi = yi ) = n i=1 ( exp(硫0 + 硫1 揃 xi1) 1 + exp(硫0 + 硫1 揃 xi1) )yi ( 1 1 + exp(硫0 + 硫1 揃 xi1) )1yi 螳碁襦 螳ル(一危一 襯) . 蠏瑚れ 螻燕覃 Likelihood 願 豕襦 硫襯 蟲 蟆. Case Control企 磯磯 Likelihood襯 蟲. Jinseob Kim Regression Basic July 15, 2015 18 / 26
  • 19. Logistic Regression 伎 Log( pi 1 pi ) = 硫0 + 硫1 揃 xi1 x1 讀螳襦 Log( p 1p ) 硫1襷 讀螳. p 1p exp(硫1)覦郁 . Odds Ratio = exp(硫1) Jinseob Kim Regression Basic July 15, 2015 19 / 26
  • 20. Poisson Regression Contents 1 Introduction 2 Regression Review Basic linear regression MLE 譯殊 讌 3 Logistic Regression 4 Poisson Regression Jinseob Kim Regression Basic July 15, 2015 20 / 26
  • 21. Poisson Regression 螳讌 一: 蠏覿 螳? 覦, 襷 : 一 襯 企 る 企欧碁朱 蠏碁 蠏覿 螳企 覓企逢. 覓 企欧碁朱?? Jinseob Kim Regression Basic July 15, 2015 21 / 26
  • 22. Poisson Regression 危覿 & 蠏覿 & ° 危覿: 覦襯 p 殊 n覯 . 蠏覿: n 覓危 危覿 °: n , p 0, np 了 朱 n! (n k)!k! pk (1 p)nk e了 了k k! Jinseob Kim Regression Basic July 15, 2015 22 / 26
  • 23. Poisson Regression Figure: Poisson distribution Jinseob Kim Regression Basic July 15, 2015 23 / 26
  • 24. Poisson Regression Poisson regression model log(E(Y | x)) = 留 + 硫 x 讀, log(蠏覦)螻 蟯螻螳 . E(Y | x) = e留+硫 x Log(RR) = exp(硫) MLE豢 https://en.wikipedia.org/wiki/Poisson_regression 谿語^ Jinseob Kim Regression Basic July 15, 2015 24 / 26
  • 25. Poisson Regression Examples ## ## Call: ## glm(formula = nonacc ~ meanpm10 + meanso2 + meanno2 + meanco + ## maxo3 + meantemp + meanhumi + meanpress, family = poisson, ## data = mort) ## ## Deviance Residuals: ## Min 1Q Median 3Q Max ## -16.7854 -2.7891 -0.8845 1.6723 16.4589 ## ## Coefficients: ## Estimate Std. Error z value Pr(>|z|) ## (Intercept) 2.160e+01 2.670e-01 80.90 <2e-16 *** ## meanpm10 1.318e-03 5.916e-05 22.28 <2e-16 *** ## meanso2 -4.389e-02 6.286e-04 -69.82 <2e-16 *** ## meanno2 4.168e-02 1.379e-04 302.27 <2e-16 *** ## meanco -8.808e-02 6.387e-04 -137.90 <2e-16 *** ## maxo3 -6.130e-03 9.672e-05 -63.38 <2e-16 *** ## meantemp -1.170e-02 2.388e-04 -48.99 <2e-16 *** ## meanhumi -4.194e-03 1.042e-04 -40.25 <2e-16 *** ## meanpress -1.748e-02 2.596e-04 -67.36 <2e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## (Dispersion parameter for poisson family taken to be 1) ## ## Null deviance: 328676 on 17354 degrees of freedom ## Residual deviance: 210104 on 17346 degrees of freedom ## (207 observations deleted due to missingness) ## AIC: 300091 ## ## Number of Fisher Scoring iterations: 5Jinseob Kim Regression Basic July 15, 2015 25 / 26
  • 26. Poisson Regression END Email : secondmath85@gmail.com O鍖ce: (02)880-2473 H.P: 010-9192-5385 Jinseob Kim Regression Basic July 15, 2015 26 / 26