ReAct: Synergizing Reasoning and Acting in Language Modelsharmonylab
?
公開URL:https://arxiv.org/abs/2210.03629
出典:Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, Yuan Cao : ReAct: Synergizing Reasoning and Acting in Language Models, arXiv: 2210.03629 (2022)
概要:本論文では大規模言語モデルにおいて推論(Reasoning)と行動(Acting)を組合わせるprompt手法であるReActを提案した。知識集約型の推論タスク(QAタスク?事実検証タスク)と意思決定タスク(テキストゲーム、ウェブナビゲーション)でReActの性能を評価した。推論タスクにおいてReActはWikipedia APIとの対話によりChain of ThoughtのHallucinationを軽減し、意思決定タスクにおいては模倣学習や強化学習による手法を上回る性能を示した。
The document discusses recent advances in generative adversarial networks (GANs) for image generation. It summarizes two influential GAN models: ProgressiveGAN (Karras et al., 2018) and BigGAN (Brock et al., 2019). ProgressiveGAN introduced progressive growing of GANs to produce high resolution images. BigGAN scaled up GAN training through techniques like large batch sizes and regularization methods to generate high fidelity natural images. The document also discusses using GANs to generate full-body, high-resolution anime characters and adding motion through structure-conditional GANs.
2022/3/24に開催した「オンプレML基盤 on Kubernetes」の資料です。機械学習モデルの開発者が、よりモデルの開発にのみ集中できるようにすることを目指して開発している「LakeTahoe(レイクタホ)」について紹介します。
https://ml-kubernetes.connpass.com/event/239859/
ベイズ最適化によるハイパーパラメータ探索についてざっくりと解説しました。
今回紹介する内容の元となった論文
Bergstra, James, et al. "Algorithms for hyper-parameter optimization." 25th annual conference on neural information processing systems (NIPS 2011). Vol. 24. Neural Information Processing Systems Foundation, 2011.
https://hal.inria.fr/hal-00642998/
The document provides an overview of an AWS webinar on CloudFormation that will cover:
1) An introduction to CloudFormation and how to get started with it.
2) Development, testing, deployment, and operation methods for CloudFormation.
3) The webinar is intended for those new to CloudFormation or already using it to learn about useful CloudFormation features and efficient automation methods in 2020.
The document discusses implementing an event-driven architecture using events instead of synchronous APIs. It explains that events decouple services by allowing them to communicate asynchronously through a centralized event routing system. This loose coupling makes services more independent and resilient, as failures in downstream services do not block upstream ones. It also improves scalability and maintainability by reducing dependencies between services. The document provides examples to illustrate how an event-driven system has less coupling between producers and consumers compared to a synchronous API approach.
This document summarizes a research paper on scaling laws for neural language models. Some key findings of the paper include:
- Language model performance depends strongly on model scale and weakly on model shape. With enough compute and data, performance scales as a power law of parameters, compute, and data.
- Overfitting is universal, with penalties depending on the ratio of parameters to data.
- Large models have higher sample efficiency and can reach the same performance levels with less optimization steps and data points.
- The paper motivated subsequent work by OpenAI on applying scaling laws to other domains like computer vision and developing increasingly large language models like GPT-3.
The document discusses recent advances in generative adversarial networks (GANs) for image generation. It summarizes two influential GAN models: ProgressiveGAN (Karras et al., 2018) and BigGAN (Brock et al., 2019). ProgressiveGAN introduced progressive growing of GANs to produce high resolution images. BigGAN scaled up GAN training through techniques like large batch sizes and regularization methods to generate high fidelity natural images. The document also discusses using GANs to generate full-body, high-resolution anime characters and adding motion through structure-conditional GANs.
2022/3/24に開催した「オンプレML基盤 on Kubernetes」の資料です。機械学習モデルの開発者が、よりモデルの開発にのみ集中できるようにすることを目指して開発している「LakeTahoe(レイクタホ)」について紹介します。
https://ml-kubernetes.connpass.com/event/239859/
ベイズ最適化によるハイパーパラメータ探索についてざっくりと解説しました。
今回紹介する内容の元となった論文
Bergstra, James, et al. "Algorithms for hyper-parameter optimization." 25th annual conference on neural information processing systems (NIPS 2011). Vol. 24. Neural Information Processing Systems Foundation, 2011.
https://hal.inria.fr/hal-00642998/
The document provides an overview of an AWS webinar on CloudFormation that will cover:
1) An introduction to CloudFormation and how to get started with it.
2) Development, testing, deployment, and operation methods for CloudFormation.
3) The webinar is intended for those new to CloudFormation or already using it to learn about useful CloudFormation features and efficient automation methods in 2020.
The document discusses implementing an event-driven architecture using events instead of synchronous APIs. It explains that events decouple services by allowing them to communicate asynchronously through a centralized event routing system. This loose coupling makes services more independent and resilient, as failures in downstream services do not block upstream ones. It also improves scalability and maintainability by reducing dependencies between services. The document provides examples to illustrate how an event-driven system has less coupling between producers and consumers compared to a synchronous API approach.
This document summarizes a research paper on scaling laws for neural language models. Some key findings of the paper include:
- Language model performance depends strongly on model scale and weakly on model shape. With enough compute and data, performance scales as a power law of parameters, compute, and data.
- Overfitting is universal, with penalties depending on the ratio of parameters to data.
- Large models have higher sample efficiency and can reach the same performance levels with less optimization steps and data points.
- The paper motivated subsequent work by OpenAI on applying scaling laws to other domains like computer vision and developing increasingly large language models like GPT-3.
2016年2月25日@JJK会館に開催された「クイック開発」セミナーの資料です。
無料トライアルの申し込みは下記から。
http://apppot.jp
近年、経営層や現場からの企業向けモバイルアプリのニーズが高まっていますが、開発の際には従来のWebシステム開発との違いに戸惑うこともしばしばあります。本セッションではコンシューマ向けでは一般的になりつつあるmBaaS(Mobile Backend as a Service)を使ったサーバ開発なしのモバイルアプリ開発について、その特徴、メリット、開発の方法論とコツ、事例等を企業向けmBaaS製品であるAppPotをベースにご紹介をします。