Kebutuhan Sentiment Analysis
Text Mining untuk Sentiment Analysis
Pengolahan kata Text Mining menggunakan Machine Learning
Studi Kasus Sentiment Analysis
Laporan praktikum normalisasi membahas proses normalisasi tabel faktur pembelian barang dari bentuk awal yang tidak normal menjadi bentuk normal satu. Tabel awal memiliki kelemahan seperti tidak fleksibel untuk diupdate, insert, dan delete, serta mengandung redundansi data. Proses normalisasi menghasilkan tabel normal satu yang masing-masing baris hanya berisi satu transaksi, sehingga fleksibel untuk dioperasikan dan bebas dari redundansi.
This document provides an introduction to sentiment analysis. It begins with an overview of sentiment analysis and what it aims to do, which is to automatically extract subjective content like opinions from digital text and classify the sentiment as positive or negative. It then discusses the components of sentiment analysis like subjectivity and sources of subjective text. Different approaches to sentiment analysis are presented like lexicon-based, supervised learning, and unsupervised learning. Challenges in sentiment analysis are also outlined, such as dealing with language, domain, spam, and identifying reliable content. The document concludes with references for further reading.
Linear regression is a statistical method used to analyze and understand the relationship between two or more variables. It predicts a numeric target variable based on one or more independent variables. Single linear regression uses one independent variable to predict the dependent variable based on a linear equation. The document provides examples of calculating linear regression coefficients and making predictions using the linear regression equation. It also discusses evaluating linear regression models using metrics like MAE, MSE, and RMSE.
1. Dokumen tersebut membahas tentang model konseptual, ide model konseptual, model mental, dan pentingnya menyembunyikan kompleksitas sistem dari pemakai.
Data science adalah ilmu yang menggabungkan matematika, statistika, dan ilmu komputer untuk menganalisis data besar dan kecil guna menemukan pola dan memprediksi dengan akurat, membantu pengambilan keputusan. Kemampuan pentingnya termasuk pemrograman, basis data, analisis dan visualisasi data, serta pemahaman masalah bisnis. Data science mencakup data mining untuk menemukan pola baru dan machine learning untuk melatih sistem agar belajar sendiri
Dr. Ismail Fahmi gave a presentation about Drone Emprit, a natural language processing company he founded. Drone Emprit develops a big data system to monitor and analyze online and social media using technologies like machine learning and sentiment analysis. The system crawls data from sources like news sites, Twitter, Facebook and indexes the data. It then performs analytics like sentiment analysis, opinion analysis, social network analysis and visualizes the results. Examples of case studies analyzed include elections in West Java and analysis of pro-contra PKI issues.
Teks tersebut membahas tentang kombinatorika dan konsep-konsep dasarnya seperti permutasi dan kombinasi. Secara singkat, teks tersebut menjelaskan cara menghitung jumlah kemungkinan susunan objek-objek tanpa harus menyebutkan satu per satu susunannya menggunakan aturan perkalian dan penjumlahan, serta rumus-rumus permutasi dan kombinasi.
Dokumen tersebut membahas tentang metode penelitian kuantitatif yaitu hipotesis, jenis-jenis hipotesis, cara pengujian hipotesis, dan uji statistik Z dan T. Hipotesis didefinisikan sebagai pernyataan dugaan hubungan antara dua variabel atau lebih. Ada tiga jenis hipotesis yakni deskriptif, komparatif, dan asosiatif. Uji Z digunakan untuk sampel besar sedangkan uji T untuk sampel kecil. Kedua
Modul Pratikum Algoritma dan Pemrograman dalam Bahasa Visual C++ 2010eddie Ismantoe
油
Modul pratikum ini membahas algoritma dan pemrograman dalam bahasa Visual C++. Modul ini disusun oleh Edi Ismanto untuk mahasiswa Program Studi Pendidikan Informatika Universitas Muhammadiyah Riau. Modul ini memberikan pengertian dasar tentang Visual C++, tipe data, dan struktur program untuk membantu mahasiswa memahami dan mengimplementasikan algoritma serta program komputer menggunakan Visual C++.
Dokumen tersebut membahas tentang klasifikasi data mining, meliputi definisi klasifikasi, langkah-langkah klasifikasi, contoh task klasifikasi, teknik klasifikasi seperti decision tree dan Naive Bayes, serta parameter evaluasi model."
01 - Introduction to Data Mining - Original.pdfElvi Rahmi
油
01. Dokumen tersebut membahas tentang pengantar data mining, meliputi pengertian data mining, manfaat, bidang terkait, proses, task, dan penerapannya di berbagai bidang serta bahasa pemrograman yang digunakan.
This R Programming Tutorial will unravel the complete Introduction to R, Benefits of R for Business, What is Sentiment Analysis?, Advantages & Applications of Sentiment Analysis. In addition, we will also extensively cover Data Collection & Results using Sentiment Analysis.
At the end, you'll have strong knowledge regarding Sentiment Analytics via R Programming.
PPT Agenda
Introduction to R Programming
R for Data Analysis
What is Sentiment Analysis all about?
How Sentiment Analysis works
Real World Applications of R Sentiment Analysis
Job Trends for R
----------
What is R Programming?
R is a programming language and software environment for statistical computing and graphics. It is widely used among statisticians and data miners for data analysis and visualization.
What is Sentiment Analysis?
Sentiment analysis is the process of computing, identifying and categorizing opinions expressed in a blurb of text in order to determine whether a user's attitude towards a particular topic or product is positive, negative, or neutral. It uses natural language processing, text analysis and computational linguistics to identify and extract subjective information from text.
----------
Sentiment Analysis has the following components:
1. Collect Data from Desired Sources
2. Remove Sentiment Neutral Words
3. Two Way Categorization
4. Results are Positive on Negative
5. Act on the Model!
----------
Applications of Predictive Analysis
1. Analytical Customer Relationship Management (CRM)
2. Clinical decision support systems
3. Customer satisfaction & retention
4. Direct marketing
5. Fraud detection
----------
Skillspeed is a live e-learning company focusing on high-technology courses. We provide live instructor led training in BIG Data & Hadoop featuring Realtime Projects, 24/7 Lifetime Support & 100% Placement Assistance.
Email: sales@skillspeed.com
Website: https://www.skillspeed.com
Make a query regarding a topic of interest and come to know the sentiment for the day in pie-chart or for the week in form of line-chart for the tweets gathered from twitter.com
1. Dokumen tersebut membahas tentang model konseptual, ide model konseptual, model mental, dan pentingnya menyembunyikan kompleksitas sistem dari pemakai.
Data science adalah ilmu yang menggabungkan matematika, statistika, dan ilmu komputer untuk menganalisis data besar dan kecil guna menemukan pola dan memprediksi dengan akurat, membantu pengambilan keputusan. Kemampuan pentingnya termasuk pemrograman, basis data, analisis dan visualisasi data, serta pemahaman masalah bisnis. Data science mencakup data mining untuk menemukan pola baru dan machine learning untuk melatih sistem agar belajar sendiri
Dr. Ismail Fahmi gave a presentation about Drone Emprit, a natural language processing company he founded. Drone Emprit develops a big data system to monitor and analyze online and social media using technologies like machine learning and sentiment analysis. The system crawls data from sources like news sites, Twitter, Facebook and indexes the data. It then performs analytics like sentiment analysis, opinion analysis, social network analysis and visualizes the results. Examples of case studies analyzed include elections in West Java and analysis of pro-contra PKI issues.
Teks tersebut membahas tentang kombinatorika dan konsep-konsep dasarnya seperti permutasi dan kombinasi. Secara singkat, teks tersebut menjelaskan cara menghitung jumlah kemungkinan susunan objek-objek tanpa harus menyebutkan satu per satu susunannya menggunakan aturan perkalian dan penjumlahan, serta rumus-rumus permutasi dan kombinasi.
Dokumen tersebut membahas tentang metode penelitian kuantitatif yaitu hipotesis, jenis-jenis hipotesis, cara pengujian hipotesis, dan uji statistik Z dan T. Hipotesis didefinisikan sebagai pernyataan dugaan hubungan antara dua variabel atau lebih. Ada tiga jenis hipotesis yakni deskriptif, komparatif, dan asosiatif. Uji Z digunakan untuk sampel besar sedangkan uji T untuk sampel kecil. Kedua
Modul Pratikum Algoritma dan Pemrograman dalam Bahasa Visual C++ 2010eddie Ismantoe
油
Modul pratikum ini membahas algoritma dan pemrograman dalam bahasa Visual C++. Modul ini disusun oleh Edi Ismanto untuk mahasiswa Program Studi Pendidikan Informatika Universitas Muhammadiyah Riau. Modul ini memberikan pengertian dasar tentang Visual C++, tipe data, dan struktur program untuk membantu mahasiswa memahami dan mengimplementasikan algoritma serta program komputer menggunakan Visual C++.
Dokumen tersebut membahas tentang klasifikasi data mining, meliputi definisi klasifikasi, langkah-langkah klasifikasi, contoh task klasifikasi, teknik klasifikasi seperti decision tree dan Naive Bayes, serta parameter evaluasi model."
01 - Introduction to Data Mining - Original.pdfElvi Rahmi
油
01. Dokumen tersebut membahas tentang pengantar data mining, meliputi pengertian data mining, manfaat, bidang terkait, proses, task, dan penerapannya di berbagai bidang serta bahasa pemrograman yang digunakan.
This R Programming Tutorial will unravel the complete Introduction to R, Benefits of R for Business, What is Sentiment Analysis?, Advantages & Applications of Sentiment Analysis. In addition, we will also extensively cover Data Collection & Results using Sentiment Analysis.
At the end, you'll have strong knowledge regarding Sentiment Analytics via R Programming.
PPT Agenda
Introduction to R Programming
R for Data Analysis
What is Sentiment Analysis all about?
How Sentiment Analysis works
Real World Applications of R Sentiment Analysis
Job Trends for R
----------
What is R Programming?
R is a programming language and software environment for statistical computing and graphics. It is widely used among statisticians and data miners for data analysis and visualization.
What is Sentiment Analysis?
Sentiment analysis is the process of computing, identifying and categorizing opinions expressed in a blurb of text in order to determine whether a user's attitude towards a particular topic or product is positive, negative, or neutral. It uses natural language processing, text analysis and computational linguistics to identify and extract subjective information from text.
----------
Sentiment Analysis has the following components:
1. Collect Data from Desired Sources
2. Remove Sentiment Neutral Words
3. Two Way Categorization
4. Results are Positive on Negative
5. Act on the Model!
----------
Applications of Predictive Analysis
1. Analytical Customer Relationship Management (CRM)
2. Clinical decision support systems
3. Customer satisfaction & retention
4. Direct marketing
5. Fraud detection
----------
Skillspeed is a live e-learning company focusing on high-technology courses. We provide live instructor led training in BIG Data & Hadoop featuring Realtime Projects, 24/7 Lifetime Support & 100% Placement Assistance.
Email: sales@skillspeed.com
Website: https://www.skillspeed.com
Make a query regarding a topic of interest and come to know the sentiment for the day in pie-chart or for the week in form of line-chart for the tweets gathered from twitter.com
Sentiment analysis software uses natural language processing and artificial intelligence to analyze text such as reviews and identify whether the opinions and sentiments expressed are positive or negative. It can help businesses understand customer perceptions of products and brands. While sentiment analysis works reasonably well for classifying simple positive and negative sentiments, it faces challenges in dealing with ambiguity and nuance in human language. The accuracy of sentiment analysis depends on factors such as the complexity of the language analyzed and how finely sentiments are classified.
SentiTweet is a sentiment analysis tool for identifying the sentiment of the tweets as positive, negative and neutral.SentiTweet comes to rescue to find the sentiment of a single tweet or a set of tweets. Not only that it also enables you to find out the sentiment of the entire tweet or specific phrases of the tweet.
This document discusses predicting movie box office success based on sentiment analysis of tweets. It presents the methodology, which includes collecting twitter data on movies, preprocessing the data by removing noise and irrelevant tweets, using a trained classifier to label tweets as positive, negative, neutral or irrelevant, and calculating a PT-NT ratio based on these labels to predict if a movie will be a hit, flop or average. Related work on using social media to predict outcomes is also discussed.
Negative Sentiment (or "Sentiment Analysis is Sh*te")Mat Morrison
油
I used to believe that sentiment analysis was one of the most important tools in a smart marketer's box.
The rise of social media offered (I thought) a huge, free, and above all, reliable source of both qualitative and quantitative data about how real people really feel about brands, and how our marketing contributed to those feelings.
Over the years, though, I've become increasingly disappointed in both the reality and the promise; to the point at which I'm actively recommending that our clients avoid using social media sentiment in their models or as a performance metric.
It's time for us all to stop kidding ourselves, 'fess up, and end the conspiracy. In this short talk, I hope to explain why sentiment analysis doesn't function as a useful social media metric, now or EVER.
Supervised Learning Based Approach to Aspect Based Sentiment AnalysisTharindu Kumara
油
Aspect Based Sentiment Analysis (ABSA) systems receive as input a set of texts (e.g., product reviews) discussing a particular entity (e.g., a new model of a laptop). The systems attempt to
identify the main (e.g., the most frequently discussed) aspects (features) of the entity (e.g., battery, screen) and to estimate the average sentiment of the texts per aspect (e.g., how positive or negative the opinions are on average for each aspect).
This document discusses sentiment analysis and how it is used. It defines sentiment analysis as extracting opinions, emotions, and sentiments from data. Examples are given of how companies like Delta Airlines and Macy's use sentiment analysis of social media to improve customer experience. Tools for implementing sentiment analysis are mentioned, and steps for performing sentiment analysis in R are outlined, including loading data, creating word lists, applying algorithms, and analyzing results.
Social media & sentiment analysis splunk conf2012Michael Wilde
油
This presentation was delivered at Splunk's User Conference (conf2012). It covers info about social media data, how to index / use it with Splunk and a lot of content around Sentiment Analysis.
1. Sentiment analysis involves using natural language processing, statistics, or machine learning to identify and extract subjective information like opinions, attitudes, and emotions from text.
2. It can analyze sentiment at different levels of granularity, such as document, sentence, or entity level.
3. Sentiment analysis has many applications including understanding customer opinions, predicting election results, and improving marketing strategies.
4. Performing accurate sentiment analysis requires understanding the concept of an opinion as a quintuple that identifies the target, aspect, sentiment polarity, opinion holder, and time.
R by example: mining Twitter for consumer attitudes towards airlinesJeffrey Breen
油
This document describes analyzing sentiment towards airlines on Twitter. It searches Twitter for mentions of airlines, collects the tweets, scores the sentiment of each tweet using a simple word counting algorithm, and summarizes the results for each airline. It then compares the Twitter sentiment scores to customer satisfaction scores from the American Customer Satisfaction Index. A linear regression shows a relationship between the Twitter and ACSI scores, suggesting Twitter sentiment analysis can provide insights into customer satisfaction.
Text Mining with R -- an Analysis of Twitter DataYanchang Zhao
油
This document discusses analyzing Twitter data using text mining techniques in R. It outlines extracting tweets from Twitter and cleaning the text by removing punctuation, numbers, URLs, and stopwords. It then analyzes the cleaned text by finding frequent words, word associations, and creating a word cloud visualization. It performs text clustering on the tweets using hierarchical and k-means clustering. Finally, it models topics in the tweets using partitioning around medoids clustering. The overall goal is to demonstrate various text mining and natural language processing techniques for analyzing Twitter data in R.
The document outlines a text analytics project conducted by an Office of Inspector General to answer business questions. It describes assessing over 10,000 public comments on proposed rules to see if common terms appeared in final rules and analyze sentiment. The analysis found that most comments were positive and that text mining tools could help prioritize rule reviews, identifying three rules for further study. Lessons included standardizing data, addressing security, gaining executive support, and ensuring projects are repeatable.
Facebook was founded in 2004 by Mark Zuckerberg and others. It now has over 1.3 billion active users worldwide and 9,199 employees. Its mission is to connect people and make the world more open. A SWOT analysis identified strengths like its large user base but also weaknesses like reliance on advertising revenue. Porter's five forces found low threat of new entrants but high bargaining power of users and suppliers. The company has had success due to its usability and meeting psychological needs. It has acquired companies like Instagram and WhatsApp to expand. Facebook works on reducing its environmental impact and increasing internet access through projects like Internet.org.
This document summarizes Dove Deep Moisture Body Wash with NutriumMoisture technology. It targets women ages 18+ who are beauty conscious and have dry skin. The body wash cares for skin ten layers deep, is more mild than competitors, and moisturizes skin well while also cleansing effectively. It is currently available in several countries including the US and India online, and is promoted through social media, magazines, and other campaigns.
This document discusses text and web mining. It defines text mining as analyzing huge amounts of text data to extract information. It discusses measures for text retrieval like precision and recall. It also covers text retrieval and indexing methods like inverted indices and signature files. Finally, it discusses challenges in web mining like the huge size and dynamic nature of the web and how web usage mining allows collection of web access information from server logs.
The document describes a text analysis project that involved:
1. Crawling reviews for the Moto G (2nd gen) from Flipkart.com.
2. Creating a term document matrix and word cloud to analyze terms.
3. Using latent semantic analysis for dimension reduction.
4. Clustering reviews based on terms and documents.
5. Analyzing ratings and comparing sentiments in reviews to ratings.
This document discusses text analytics and demonstrates its use on a case study. It begins by defining text analytics as the process of analyzing unstructured text to extract relevant information and transform it into business intelligence. It then shows how text analytics is performed on a dataset of 1000 game reviews using R's tm package. Key steps include cleaning the data, creating a document-term matrix, and finding the most frequent terms. Word clouds and networks are generated to visualize the results. The network creation process and potential applications of network approaches are also briefly outlined.
Dokumen tersebut membahas tentang analitik sosial, yang merupakan pengumpulan dan analisis statistik data digital mengenai interaksi pengguna dengan suatu organisasi melalui media online. Dokumen ini menjelaskan manfaat analitik sosial untuk bisnis, tantangan-tantangannya, serta keunggulan layanan analitik sosial yang ditawarkan termasuk kemampuannya menganalisis sentimen, emosi, dan memberikan insight yang dapat ditindaklanjuti.
Dokumen tersebut membahas tentang data mining dan aplikasinya untuk kepentingan pemasaran, termasuk metode-metode seperti link analysis dan market basket analysis untuk memahami pola pelanggan, serta penggunaan sosial network analysis dan web semantik.
2. 1.Kebutuhan Sentiment Analysis
2.Text Mining untuk Sentiment Analysis
3.Pengolahan kata Text Mining menggunakan Machine
Learning
4.Studi Kasus Sentiment Analysis
Overview
4. Social Media
Berbagi
Informasi
Opini Publik
Peran
Pengawasan
Meningkatnya penggunaan social
media di masyarakat, berdampak
pada bertambahnya peran
berbagi infromasi di ruang
public, yang selanjutnya
menyebabkan berkembangnya
opini publik.
Kemudian hal tersebut
dimanfaatkan menggunakan
metoda tertentu untuk tujuan
pengawasan terhadap suatu
objek.
Kebutuhan Sentiment Analysis
5. SentimenAnalisis adalah jenis natural language yaitu
pengolahan kata untuk melacak mood masyarakat tentang
produk atau topik tertentu.Analisis sentimen, disebut opinion
mining.
Definisi Sentiment Analysis
(G.Vinodhini, M.Chandrasekaran 2012)
8. Pemilihah Sumber data
Untuk sentiment.
Pemilihan harus
berdasar pada kegunaan
sosmed.
Ada fasilitas Repost yang memiliki
istilah Reshared, jadi kita langsung
bisa mengutip sebuah status dari
teman yang ada pada circle kita.
Ini mirip seperti Retweet di Twitter
-Atur status Status yang kita buat
bisa diatur apakah itu tidak boleh
dishare kembali atau tidak boleh
dikomentari.
G+
media bisnis online melalui jaringan
pertemanan yang telah dimiliki.
-Upload gambar mudah, dan bisa dibuat
album foto.
-Terdapat aplikasi chat yang membuat
pangguna yang sedang online bisa chat
dengan temannya yang sedang online juga.
-Pengguna bisa membuat/bergabung
dengan group
kesukaan/hobi/bisnis/pertemanan yang
memungkinkan pembagian informasi lebih
spesifik, mudah, dan tepat sasaran.
Facebook
Menjangkau tidak hanya antara teman,
tetapi komunikasi antara artis dengan fans-
nya juga menjadi lebih mudah.
-Komunikasi di twitter terjadi sangat cepat.
Sering terjadi berita-berita terupdate,
seperti terjadinya suatu bencana misalnya,
lebih dahulu didapatkan infonya melalui
twitter.
-Terdapat fitur trending topic yang
memungkinkan kita untuk mengetahui apa
saja yang sedang in atau happening
dibicarakan oleh para pengguna twitter.
-Dapat memasarkan produk secara geratis.
Twitter
Memperindah foto kita
bisa menshare video
memasarkan produk atau
berjualan online
Instagram
sharing apa saja yang kita mau,
maupun itu lagu, curhatan, foto,
tempat/lokasi kita berada.
Path bersifat privasi, tidak seperti
facebook dan twitter
Path memiliki 8 Free Filter Lenses
utk mempercantik foto/video
Path
http://suckrockers.blogspot.co.id/20
13/12/sosial-media-beserta-
kelebihan-dan.html
Pemilihan Sumber Data (Sosmed)
9. Text Mining untuk Sentiment
Analysis
Goals:
Audience mengerti dan memahami apa yang
dimassud dengan tText Mining
11. Komputational
Visualisasi
Statistika
Machine
Learning
Artificial
Intelleigence
Asosiasi
Sekuensial
Pattern
Recognition
Basis Data
Basis Data
Definisi Text Mining
Text mining mengacu pada pencarian
informasi, pertambangan data, mesin-
learning, statistik, dan komputasi
linguistic terhadap informasi yang
disimpan sebagai teks(Bridge, C 2011).
12. Proses Text Mining
Data
Teks
Tokenisaisi
Sentimen
Positif
Algoritma Machine
Learning
Sentimen
Negatif
End
Input Proses Output
Twitter data
Autentifikasi
berdasarkan
Token akun
Ekstrak
berdasarkan
filter
Data Preparation
Visualisasi
sentimen
analisisdalam
Bentuk grafik
13. WEB Mining
mengekstraksi kata kunci yang
terkandung pada dokumen web. Isi
data web antara lain dapat berupa
teks, citra, audio, video, metadata,
dan hyperlink.
Web Content
Mining
struktur link dari hyperlink
Membangun rangkuman website dan
halaman web.
Salah satu manfaatnya adlah
untuk menentukan pagerank pada
suatu halaman web
Web Structure
Mining
teknik untuk mengenali perilaku
pelanggan dan struktur web melalui
informasi yang diperoleh dari log, click
stream, cookies, dan query
Web Usage
Mining
14. Pengolahan Text Mining
menggunakan Machine-Learning
Goals:
Audience mengetahui konsep Machine Learning,
Tugas, Cara kerja dan Algoritma Machine Learning
16. Tugas Sederhana Tugas rumit
Capaian yang diinginkan Jelas Jelas
Uraiancapaian Dapat dirinci Sulit dirinci
Cara mencapai Prosedur
rumus
Memperkirakan
Coba-coba
Sifat capaian eksak Kira-kira
Cara di komputer Pemrograman, algoritma
konvensional
Machine learning
Tugas Sederhana & Tugas Rumit
17. Tugas Sederhana VS Tugas
Rumit
Kelulusan Siswa
Profit/Lost
Suku Bunga Deposito
Menentukan kadar gula dalam darah
Prediksi harga saham
Menentukan kalimat positif dan
negatif
Keindahan Gunung Bromo sangat
mempesona
Penduduk disekitar taman nasional
gunung bromo baik dan ramah
Fasilitas dibukit pananjakan kurang
memadai
Gunung Bromo banjir pengunjung
Fasilitas di tempat itu tidak jelek
Keindahan bukit mandalika selama
ini tidak banyak yang tau
18. Regresi
Input kontinyu/diskrit, output kontinyu, dengan target
spesifik
Klasifikasi
Input kontinyu/diskrit,outputdiskrit, dengan target spesifik
Clustering
Input kontinyu/diskrit,outputdiskrit, dengan target terbuka
Jenis Tugas Machine-Learning
22. R- Package Sentiment (classify)
R menyediakan library sentiment dalam R package yang di
buat oleh Timothy Jurka. Dalam package sentiment ini
berfungsi dua fungsi yaitu classify_emotion dan
classify_polarity.
classify_emotion. Fungsi ini membantu
mengklasifikasikan emotion kedalam beberapa klasifikasi
yaitu: anger, fear, joy, sadness and supprise.
classify_polarity. Mengkasifikasikan kedalam respon
positive, negative dan neutral.
23. teknik analisis sentimen dapat diklasifikasikan ke dalam dua kategori:
Lexicon based: Teknik ini bergantung pada kamus kata yang
dijelaskan dengan orientasi, digambarkan sebagai polaritas
positive, negative dan netral. Metode ini memberikan hasil presisi
tinggi selama leksikon digunakan memiliki cakupan yang baik dari
kata-kata yang dihadapi dalam teks yang dianalisis.
Learning Based: Teknik ini memerlukan pelatihan classifier dengan
contoh polaritas dikenal disajikan sebagai teks diklasifikasikan ke
dalam kelas yang positif, negatif dan netral.
Teknik Analisis Sentiment
25. Sentimen Analisis Menggunakan Text
Mining Social Media Twitter sebagai
Controling Pasar Pariwisata Indonesia
Goals: Audience turut berpartisipasi aktif
dalam Studi Kasus
27. Twitter
Na誰ve
bayes
Visualisasi
Data social media twitter dengan filter 10
destinasi wisata yang akan diprioritaskan
yaitu:
1. Danau Toba,
2. Tanjung Kelayang,
3. Kepulauan Seribu,
4. Tanjung Lesung,
5. Borobudur
6. Tamana Nasional Bromo-Tengger-
Semeru,
7. Mandalika,
8. Wakataobi,
9. Labuan Bajo dan
10.Pulau Morotai.
Ruang Lingkup Studi Kasus
29. Mengapa
Digunakan R ??
R adalah bahasa pemrograman dan perangkat lunak untuk
analisis statistikadan grafik
Kode sumbernya tersedia secara bebas di bawah Lisensi Publik
Umum GNU, dan versi biner prekompilasinya tersedia untuk berbagai
sistem operasi
R menggunakan antarmuka baris perintah,
R menyediakan berbagai teknik statistika (permodelan linier dan
nonlinier, uji statistik klasik, analisis deret waktu, klasifikasi,
klasterisasi,dan sebagainya)
Tool