The document discusses solutions to math problems involving number theory, algebra, geometry and probability. It includes exercises and their step-by-step answers in each topic area. The number theory section includes a problem about the number of digits in a multiplication problem. The algebra section covers problems about the relationship between square roots and the integers that satisfy an equation. The geometry section poses problems about finding missing angle measures in a triangle and calculating areas.
1 of 29
Download to read offline
More Related Content
Smart solution for 4
1. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Smart Solution
Smart Solution
English as Medium of Instruction
Ridho Alfarisi dan Agustin Puspitasari
Pendidikan Matematika
Pendidikan MIPA
Fakultas Keguruan dan Ilmu Pendidikan
Universitas Jember
22nd May 2013
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
2. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Smart Solution
Smart Solution
Smart Solution
1 Number Theory
2 Answer of Number Theory
3 Algebra
4 Answer of Algebra
5 Geometry
6 Answer of Geometry
7 Probability
8 Answer of Probability
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
3. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Smart Solution
Smart Solution
Smart Solution
1 Number Theory
2 Answer of Number Theory
3 Algebra
4 Answer of Algebra
5 Geometry
6 Answer of Geometry
7 Probability
8 Answer of Probability
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
4. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Smart Solution
Smart Solution
Smart Solution
1 Number Theory
2 Answer of Number Theory
3 Algebra
4 Answer of Algebra
5 Geometry
6 Answer of Geometry
7 Probability
8 Answer of Probability
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
5. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Smart Solution
Smart Solution
Smart Solution
1 Number Theory
2 Answer of Number Theory
3 Algebra
4 Answer of Algebra
5 Geometry
6 Answer of Geometry
7 Probability
8 Answer of Probability
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
6. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Smart Solution
Smart Solution
Smart Solution
1 Number Theory
2 Answer of Number Theory
3 Algebra
4 Answer of Algebra
5 Geometry
6 Answer of Geometry
7 Probability
8 Answer of Probability
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
7. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Smart Solution
Smart Solution
Smart Solution
1 Number Theory
2 Answer of Number Theory
3 Algebra
4 Answer of Algebra
5 Geometry
6 Answer of Geometry
7 Probability
8 Answer of Probability
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
8. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Smart Solution
Smart Solution
Smart Solution
1 Number Theory
2 Answer of Number Theory
3 Algebra
4 Answer of Algebra
5 Geometry
6 Answer of Geometry
7 Probability
8 Answer of Probability
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
9. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Smart Solution
Smart Solution
Smart Solution
1 Number Theory
2 Answer of Number Theory
3 Algebra
4 Answer of Algebra
5 Geometry
6 Answer of Geometry
7 Probability
8 Answer of Probability
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
10. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Number Theory
Exercise
1 How many digit of multiplication 22002*52003 ?
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
11. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Number Theory
Exercise
1 How many digit of multiplication 22002*52003 ?
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
12. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Answer of Number Theory
Answer
1 22002 52003 = 22002 52002 5 = (2 5)2002 5 =
(10)2002 5 so all digits is 2003
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
13. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Answer of Number Theory
Answer
1 22002 52003 = 22002 52002 5 = (2 5)2002 5 =
(10)2002 5 so all digits is 2003
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
14. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Algebra
Exercise
1 Lets a and b is natural number with a > b. if
(94 + 2
(2013)) =
(a) +
(b), then value of
a b is.....
2 Lets p and q is prims number. if its known equation
x2014 p x2013 + q = 0 haveing root integers
number, then value of p + q is...
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
15. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Algebra
Exercise
1 Lets a and b is natural number with a > b. if
(94 + 2
(2013)) =
(a) +
(b), then value of
a b is.....
2 Lets p and q is prims number. if its known equation
x2014 p x2013 + q = 0 haveing root integers
number, then value of p + q is...
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
16. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Algebra
Exercise
1 Lets a and b is natural number with a > b. if
(94 + 2
(2013)) =
(a) +
(b), then value of
a b is.....
2 Lets p and q is prims number. if its known equation
x2014 p x2013 + q = 0 haveing root integers
number, then value of p + q is...
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
17. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Answer of Algebra
Answer
1 for a, b 0, then (
a +
b)2=a b + 2
a b
a +
b= (a + b) + 2
a b.We back
that 94 + 2
2013=(61 + 33) + 2
61 33,
therefore 94 + 2
2013=
61 +
33 so we get
the value a = 61, b = 33, then a b=61 33=28
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
18. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Answer of Algebra
Answer
1 for a, b 0, then (
a +
b)2=a b + 2
a b
a +
b= (a + b) + 2
a b.We back
that 94 + 2
2013=(61 + 33) + 2
61 33,
therefore 94 + 2
2013=
61 +
33 so we get
the value a = 61, b = 33, then a b=61 33=28
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
19. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Answer of Algebra
Answer
1 Lets one of root integers of equation
x2014 p x2013 + q = 0 is t, then we get
t2014 p t2013 + q = 0 q = t2013(p t).
Following that 1 and 0 isnt root of equation
x2014 p x2013 + q = 0. So with remember that q is
prims number, then we get t = 1 therefore q = p 1
p q = 1. This information of above can
concluded that one of p,q is even and because even
prims number only 2, then we get q = 2 and p = 3.
So p + q = 5
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
20. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Answer of Algebra
Answer
1 Lets one of root integers of equation
x2014 p x2013 + q = 0 is t, then we get
t2014 p t2013 + q = 0 q = t2013(p t).
Following that 1 and 0 isnt root of equation
x2014 p x2013 + q = 0. So with remember that q is
prims number, then we get t = 1 therefore q = p 1
p q = 1. This information of above can
concluded that one of p,q is even and because even
prims number only 2, then we get q = 2 and p = 3.
So p + q = 5
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
21. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Geometry
Exercise
1 Lets P is interior point in the triangle ABC, so value
of < PAB = 10,
< PBA = 20,< PCA = 30,< PAC = 40, value of
< ABC = .......
2 Given a triangle ABC with this area 10. Point D,E,
dan F respectively lies on the edge AB, BC, dan CA
with AD =2, DB=3. If a triangle ABE and a rectangle
DBFE has same the area, then its the area is........
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
22. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Geometry
Exercise
1 Lets P is interior point in the triangle ABC, so value
of < PAB = 10,
< PBA = 20,< PCA = 30,< PAC = 40, value of
< ABC = .......
2 Given a triangle ABC with this area 10. Point D,E,
dan F respectively lies on the edge AB, BC, dan CA
with AD =2, DB=3. If a triangle ABE and a rectangle
DBFE has same the area, then its the area is........
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
23. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Geometry
Exercise
1 Lets P is interior point in the triangle ABC, so value
of < PAB = 10,
< PBA = 20,< PCA = 30,< PAC = 40, value of
< ABC = .......
2 Given a triangle ABC with this area 10. Point D,E,
dan F respectively lies on the edge AB, BC, dan CA
with AD =2, DB=3. If a triangle ABE and a rectangle
DBFE has same the area, then its the area is........
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
24. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Answer of Geometry
Answer
1 Following a sketch at below: Because the area
ABE= DBFE cause the area ADE=DEF. We
know that DE is partnership edge among ADE and
DEF, so distance point A to the edge DE equal to
distance point F to the edge DE. in other words AF
parallel DE so CE
EB = AD
DB = 2
3 . Therefore, the area
ABE = 3
5 10 = 6.
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
25. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Answer of Geometry
Answer
1 Following a sketch at below: Because the area
ABE= DBFE cause the area ADE=DEF. We
know that DE is partnership edge among ADE and
DEF, so distance point A to the edge DE equal to
distance point F to the edge DE. in other words AF
parallel DE so CE
EB = AD
DB = 2
3 . Therefore, the area
ABE = 3
5 10 = 6.
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
26. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Probability
Exercise
1 A dice at toss six times. How many trick for get total
dies 28 correctly one dice arises digit 6 is........
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
27. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Probability
Exercise
1 A dice at toss six times. How many trick for get total
dies 28 correctly one dice arises digit 6 is........
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
28. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Answer of Probability
Answer
1 Tanpa mengurangi keumuman misalkan tos pertama
muncul angka 6. maka pada tos ke dua sampai tos
ke enam hanya boleh muncul angka 1, 2, 3, 4, 5 dan
jumlanya 22. kemungkinan hal seperti ini hanya ada
3 kasus yaitu : yang pertama (2, 5, 5, 5, 5) ada 5 cara
dari 5!
4!, yang kedua (3, 4, 5, 5, 5) ada 20 cara dari 5!
3!,
yang ketiga (4, 4, 4, 5, 5) ada 10 cara dari 5!
2!3!.
sehingga total ada 35 cara jika pada tos pertama
muncul angka 6. Karena keenam tos memiliki
peluang yang sama untuk muncul angka 6 berarti
total keseluruhan cara yang mungkin yaitu
6 35 = 210 cara
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction
29. English as
Medium of
Instruction
Ridho Alfarisi
(110210101043)
dan Agustin
Puspitasari
(110210101061)
Number Theory
Number Theory
Algebra
Algebra
Geometry
Algebra
Probability
Algebra
Number Theory Number Theory Algebra Algebra Geometry Algebra Probability Algebra
Answer of Probability
Answer
1 Tanpa mengurangi keumuman misalkan tos pertama
muncul angka 6. maka pada tos ke dua sampai tos
ke enam hanya boleh muncul angka 1, 2, 3, 4, 5 dan
jumlanya 22. kemungkinan hal seperti ini hanya ada
3 kasus yaitu : yang pertama (2, 5, 5, 5, 5) ada 5 cara
dari 5!
4!, yang kedua (3, 4, 5, 5, 5) ada 20 cara dari 5!
3!,
yang ketiga (4, 4, 4, 5, 5) ada 10 cara dari 5!
2!3!.
sehingga total ada 35 cara jika pada tos pertama
muncul angka 6. Karena keenam tos memiliki
peluang yang sama untuk muncul angka 6 berarti
total keseluruhan cara yang mungkin yaitu
6 35 = 210 cara
Ridho Alfarisi (110210101043) dan Agustin Puspitasari (110210101061) FKIP
English as Medium of Instruction