This document consolidates tables showing the highest independently confirmed efficiencies for various solar cell and module technologies. It provides guidelines for including results in the tables and describes new entries since June 1997. The tables summarize the best measured efficiencies for cells, submodules, modules, and concentrator cells/modules from various test centers under standard test conditions. Relatively few new results were included in this version of the tables.
1 of 8
Download to read offline
More Related Content
Solar cell eciency tables (version 11)
1. SHORT COMMUNICATION
Solar Cell Eciency
Tables (Version 11)
Martin A. Green,1,* Keith Emery,2
Klaus Bu
cher,3
David L. King4
and Sanekazu Igari5
1Photovoltaics Special Research Centre, University of New South Wales, Sydney 2052, Australia
2
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, USA
3Fraunhofer-Institut fur Solare Energiesysteme, Oltmannsstrasse 5, D-79100 Freiburg, Germany
4Division 6224, Sandia National Laboratories, 1515 Eubank Street, Albuquerque, NM 87123, USA
5
Japan Quality Assurance Organization, Solar Techno Center, Solar Cell Test Research Division,
HIC Bldg. 2F, 4598 Murakushi-Cho, Hamamatsu-shi, Shizouka-ken 431-12, Japan
Consolidated tables showing an extensive listing of the highest independently con-
速rmed eciencies for solar cells and modules are presented. Guidelines for inclusion
of results into these tables are outlined, and new entries since June 1997 are brie俗y
described. # 1998 John Wiley & Sons, Ltd.
INTRODUCTION
Since January 1993, Progress in Photovoltaics has published 6-monthly listings of the highest con速rmed
eciencies for a range of photovoltaic cell and module technologies.1賊10
By establishing guidelines for the
inclusion of results into these tables, this not only provides an authoritative summary of the current state
of the art but also encourages researchers to seek independent con速rmation of results and to report results
on a standardized basis.
Brie俗y, the main criterion for inclusion of results in these tables is that they be measured at one of the
designated test centres listed previously6,7
under standardized test conditions. A distinction is also made
between three dierent cell area measurements: total area, aperture area and designated illumination
area.1,2
`Active area' eciency measurements are not included. (This explains some of the dierences
between results reported here and in the literature, for example, with recent tandem amorphous Si cell
results.) There are also certain minimum values of area encouraged for the dierent cell types, although
some discretion is exercised here (0.05 cm2
for a concentrator cell, 0.25 cm2
for a tandem cell, 1 cm2
for a
1-sun cell and 800 cm2
for a module).
NEW RESULTS
Highest con速rmed cell and module results are reported in Tables I賊III. Any changes in the tables from
those published previously10
are set in bold type. Table I summarizes the best measurements for cells and
submodules, Table II shows the best results for modules and Table III shows the best results for con-
centrator cells and concentrator modules. Table IV contains what might be described as `notable excep-
tions'. While not conforming to the requirements to be recognized as a class record, the cells and modules
in Table IV have notable characteristics that will be of interest to sections of the photovoltaic community.
Possibly as a result of the large number of `last-minute' results reported in the previous issue of these
tables,10
relatively few new results were received in time for inclusion in the present version of the tables.
Research
CCC 1062賊7995/98/010035賊08$17.50 Received 5 December 1997
# 1998 John Wiley & Sons, Ltd. Revised 5 December 1997
* Correspondence to: M. A. Green, Photovoltaics Special Research Centre, University of New South Wales, Sydney 2052, Australia
PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS
Prog. Photovolt. Res. Appl., 6, 35賊42 (1998)
3. Table II. Con速rmed terrestrial module eciencies measured under the global AM1.5 spectrum (1000 W m72
) at a cell temperature of 258C
Classi速cationa Ec.b
(%)
Areac
(cm2
)
VOC
(V)
ISC
(A)
FFd
(%)
Test centre
(and date)
Description
Si (crystalline) 22.7 778 (da) 5.60 3.93 80.3 Sandia (9/96) UNSW/Gochermann25
Si (multicrystalline) 15.3 1017 (ap) 14.6 1.36 78.6 Sandia (10/94) Sandia/HEM26
CIGSS 11.1+ 0.6 3665 (ap) 26.01 2.32 57.4 NREL (4/97) Siemens Solar
CdTe 9.2+ 0.5 3366 (ap) 45.59 1.10 62.1 NREL (4/97) Golden Photon
a-Si/a-SiGe/a-SiGe (tandem)e
10.2+ 0.5 903 (ap) 2.32 6.47 61.2 NREL (12/93) USSC27
aCIGSS CuInGaSSe; a-Si amorphous silicon/hydrogen alloy; a-SiGe amorphous silicon/germanium/hydrogen alloy.
b
Ec. eciency.
c
(ap) aperture area; (da) designated illumination area.
dFF 速ll factor.
eStabilized results.
#
1998
John
Wiley
&
Sons,
Ltd.
Prog.
Photovolt.
Res.
Appl.,
6,
35賊42
(1998)
SOLAR
CELL
EFFICIENCY
TABLES
37
4. Table III. Terrestrial concentrator cell and module eciencies measured under the direct beam AM1.5 spectrum at a cell temperature of 258C
Classi速cation Ec.a
(%)
Areab
(cm2
)
Concentrationc
(suns)
Test centre (and date) Description
Single cells
GaAs 27.6 0.126 (da) 255 Sandia (5/91) Spire28
GaInAsP 27.5+ 1.4 0.075 (da) 171 NREL (2/91) NREL, Entech cover
InP 24.3+ 1.2 0.075 (da) 99 NREL (2/91) NREL, Entech cover29
Si 26.8 1.60 (da) 96 FhG-ISE (10/95) SunPower back-contact30
Si (large) 21.6 20.0 (da) 11 Sandiad
(9/90) UNSW laser-grooved31
GaAs (Si substrate) 21.3 0.126 (da) 237 Sandia (5/91) Spire28
InP (GaAs substrate) 21.0+ 1.1 0.075 (ap) 88 NREL (2/91) NREL, Entech cover32
Multijunction cells
GaAs/GaSb 32.6 0.053 (da) 100 Sandiad
(10/89) Boeing, mechanical stack33
InP/GaInAs 31.8+ 1.6 0.063 (da) 50 NREL (8/90) NREL, monolithic 3-terminal34
GaAs/GaInAsP 30.2+ 1.5 0.053 (da) 40 NREL (10/90) NREL, stacked 4-terminal34
GaInP/GaAs 30.2 0.103 (da) 180 Sandia (3/94) NREL, monolithic 2-terminal35
GaAs/Si 29.6 0.317 (da) 350 Sandiad (9/88) Varian/Stanford/Sandia, mech. stack36
Submodules
GaAs/GaSb 25.1 41.4 (ap) 57 Sandia (3/93) Boeing, 3 mech. stack units
Modules
Si 20.3 1875 (ap) 80 Sandia (4/89) Sandia/UNSW/ENTECH (12 cells)37
a
E. eciency.
b(da) designated illumination area; (ap) aperture area.
cOne sun corresponds to an intensity of 1000 W m72.
d
Measurements corrected from originally measured values due to Sandia recalibration in January 1991.
#
1998
John
Wiley
&
Sons,
Ltd.
Prog.
Photovolt.
Res.
Appl.,
6,
35賊42
(1998)
38
M.
A.
GREEN
ET
AL.
5. Table IV. `Notable Exceptions': con速rmed cell and module results, not class records (global AM1.5 spectrum, 1000 W m72
, 258C)
Classi速cationa
Ec.b
(%)
Areac
(cm2)
VOC
(V)
JSC
(mA cm72)
FF
(%)
Test centre (and date) Description
Single cells (silicon)
Si (moderate area) 23.7 22.1 (da) 0.704 41.5 81.0 Sandia (8/96) UNSW PERL25
Si (Cz crystalline) 22.0+ 0.4 4.0 (ap) 0.681 41.8 77.2 FhG-ISE (11/96) Fraunhofer ISE, Cz substrate38
Si (thin crystalline) 21.5 4.044 (ap) 0.699 37.9 81.1 Sandia (8/95) UNSW (47 mm thick)39
Si (on oxide) 19.2+ 0.4 4.0 (ap) 0.668 37.1 77.5 FhG-ISE (4/97) FhG-ISE (46 m
m
m
m
mm thick, front contacted)40
Si (multicrystalline) 17.4+ 0.4 21.2 (t) 0.637 34.4 79.2 FhG-ISE (3/97) Fraunhofer ISE, Eurosolare wafer41
Si (large multicrystalline) 17.2+ 0.3 100 (t) 0.610 36.4 77.7 JQA (3/93) Sharp (mech. textured)42
Si (supported thin 速lm) 11.0+ 0.3 1.00 (ap) 0.570 25.6 75.5 FhG-ISE (5/97) ASE/ISE (30 mm on SiC-graphite)43
Si (thin 速lm on glass) 9.4+ 0.2 1.0 (ap) 0.480 26.1 74.8 JQA (2/97) Kaneka (3.5 mm on glass)
Si (large thin 速lm) 16.0+ 0.2 95.8 (ap) 0.589 35.6 76.3 JQA (2/97) Mitubishi VEST (77 mm thick)
Single cells (other)
GaAs (Ge substrate) 24.3+ 0.7 4.00 (t) 1.035 27.6 85.3 NREL (3/89) ASEC, AlGaAs window44
CIGS (thin 速lm) 17.7+ 0.5 0.413 (t) 0.674 34.0 71.2 NREL (3/96) NREL, CIGS on glass45
Photoelectrochemical 11.0+ 0.5 0.25 (ap) 0.795 19.4 71.0 FhG-ISE (12/96) EPFL, nanocrystalline dye
Modules
Si (Spheral2 module) 10.3+ 0.5 3931 (ap) 20.1 0.692 73.6 NREL (9/94) Texas Instruments46
CdTe (large) 9.1+ 0.5 6728 (ap) 95.0 0.966 66.8 NREL (4/96) Solar Cells, Inc.47
aCIGS CuInGaSe2 .
b
Ec. eciency.
c
(ap) aperture area; (t) total area; (da) designated illumination area.
#
1998
John
Wiley
&
Sons,
Ltd.
Prog.
Photovolt.
Res.
Appl.,
6,
35賊42
(1998)
SOLAR
CELL
EFFICIENCY
TABLES
39
6. The opportunity has been taken to streamline the tables by reducing the number of sub-categories in
Tables I and II, removing several entries to the Table IV `Notable Exceptions'. A literature reference for
many of the entries has also been provided. Error estimates for eciency results have also been included
where available from the relevant testing centre in time for publication.
One new result included in Table I is the 速rst reported measurement for a nanocrystalline dye solar cell
of area larger than 1 cm2
. This 1.6-cm2
device, fabricated by the Institut fu
r Angewandte Photovoltaik
(INAP), was measured by the Fraunhofer-Institut fu
r Solare Energiesysteme (FhG-ISE) to have an
eciency of 6.5%. In Table IV, a new eciency mark of 17.4% has also been demonstrated by a moderate
area multicrystalline silicon solar cell fabricated and measured by the Fraunhofer-Institut using substrates
provided by Eurosolare.
DISCLAIMER
While the information provided in the tables is provided in good faith, the authors, editors and publishers
cannot accept direct responsibility for any errors or omissions.
REFERENCES
1. M. A. Green and K. Emery, `Solar cell eciency tables', Prog. Photovolt. Res. Appl., 1, 25賊29 (1993).
2. M. A. Green and K. Emery, `Solar cell eciency tables (version 2)', Prog. Photovolt. Res. Appl., 1, 225賊228
(1993).
3. M. A. Green and K. Emery, `Solar cell eciency tables (version 3)', Prog. Photovolt. Res. Appl., 2, 27賊34 (1994).
4. M. A. Green and K. Emery, `Solar cell eciency tables (version 4)', Prog. Photovolt. Res. Appl., 2, 231賊234
(1994).
5. M. A. Green, K. Emery, K. Bu
cher and D. L. King, `Solar cell eciency tables (version 5)', Prog. Photovolt. Res.
Appl., 3, 51賊55 (1995).
6. M. A. Green, K. Emery, K. Bu
cher and D. L. King, `Solar cell eciency Tables (version 6)', Prog. Photovolt.
Res. Appl., 3, 229賊233 (1995).
7. M. A. Green, K. Emery, K. Bu
cher and D. L. King, `Solar cell eciency tables (version 7)', Prog. Photovolt. Res.
Appl., 4, 59賊62 (1996).
8. M. A. Green, K. Emery, K. Bu
cher, D. L. King and S. Igari, `Solar cell eciency tables (version 8)',
Prog. Photovolt. Res. Appl., 4, 321賊325 (1996).
9. M. A. Green, K. Emery, K. Bu
cher, D. L. King and S. Igari, `Solar cell eciency tables (version 9)',
Prog. Photovolt. Res. Appl., 5, 51賊54 (1997).
10. M. A. Green, K. Emery, K. Bu
cher, D. L. King and S. Igari, `Solar cell eciency tables (version 10)',
Prog. Photovolt. Res. Appl., 5, 265賊268 (1997).
11. J. Zhao, A. Wang, P. Altermatt and M. A. Green, `24% Ecient silicon solar cells with double layer anti-
re俗ection coatings and reduced resistance loss', Appl. Phys. Lett., 66, 3636賊3638 (1995).
12. A. Rohatgi, S. Narasimha, S. Kamra, P. Doshi, C. P. Khattak, K. Emery and H. Field, `Record high 18.6%
ecient solar cell on HEM multicrystalline material', Conf. Rec. 25th IEEE Photovoltaic Specialists Conference,
Washington, May 1997, pp. 741賊744.
13. Y. Bai, D. H. ford, J. Rand and A. Barnett, `16.6% Ecient Silicon-Film2
polycrystalline silicon solar cell',
Conf. Rec. 26th IEEE Photovoltaic Specialists Conference, Anaheim, September/October 1997, in print.
14. R. P. Gale, R. W. McClelland, D. B. Dingle, J. V. Gormley, R. M. Burgess, N. P. Kim, R. A. Mickelsen and
B. J. Stanbery, `High-eciency GaAs/CuInSe2 and AlGaAs/CuInSe2 thin-速lm tandem solar cells', Conf. Rec.
21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, pp. 53賊57.
15. R. Venkatasubramanian, B. C. O'Quinn, J. S. Hills, P. R. Sharps, M. L. Timmons, J. A. Hutchby, H. Field, A.
Ahrenkiel and B. Keyes, `18.2% (AM 1.5) Ecient GaAs solar cell on optical-grade polycrystalline Ge sub-
strate', Conf. Rec. 25th IEEE Photovoltaic Specialists Conference, Washington, May 1997, pp. 31賊36.
16. C. J. Keavney, V. E. Haven and S. M. Vernon, `Emitter structures in MOCVD InP solar cells', Conf. Rec.
21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, pp. 141賊144.
# 1998 John Wiley & Sons, Ltd. Prog. Photovolt. Res. Appl., 6, 35賊42 (1998)
40 M. A. GREEN ET AL.
7. 17. D. Bonnet, H. Richter and K. Ja
ger, `The CTS thin 速lm solar module closer to production', Conf. Rec.
13th European Photovoltaic Solar Energy Conference, Nice, October 1995, pp. 1456賊1461.
18. J. R. Tuttle, M. A. Contreras, T. J. Gillespie, K. R. Ramanathan, A. L. Tennant, J. Keane, A. M. Gabor
and R. Nou速, `17.1% Eciency Cu(In,Ga)Se2-based Thin-Film Solar Cell', Prog. Photovolt. Res. Appl., 3,
pp 235賊238, 1995.
19. N. F. Cooray, K. Kushiya, A. Fujimaki, I. Sugiyama, T. Miura, D. Okumura, M. Sato, M. Ooshita and
O. Yamase, `Large area ZnO 速lms optimized for graded band-gap Cu(InGa)Se2-based thin-速lm mini-modules',
Tech. Dig. Int. PVSEC-9, Miyasaki, November 1996, pp. 597賊598.
20. S. Okamoto, T. Takahama, Y. Hishikawa, S. Tsuge, M. Nishikune, N. Nakamura, S. Tsuda, H. Nishiwaki,
S. Nakano, and Y. Kuwano, `Improvement in a-Si:H and a-SiC:H for high-eciency solar cells using hydrogen
plasma treatment', Conf. Rec. 11th European Photovoltaic Solar Energy Conference, Montreux, October 1992,
pp. 537賊540.
21. Y. Hishikawa, M. Isomura, S. Okamoto, H. Hashimoto and S. Tsuda, `Eects of the i-layer properties and
impurity on the performance of a-Si solar cells', Tech. Dig. Int. PVSEC-7, Nagoya, November 1993, pp. 29賊32.
22. M. Ohmori, T. Takamoto, E. Ikeda and H. Kurita, `High eciency in GaP/GaAs tandem solar cells', Tech. Dig.
Int. PVSEC-9, Miyasaki, November 1996, pp. 525賊528.
23. K. Mitchell, C. Eberspacher, J. Ermer and D. Pier, `Single and tandem junction CuInSe2 cell and module tech-
nology', Conf. Rec. 20th IEEE Photovoltaic Specialists Conference, Las Vegas, September 1988, pp. 1384賊1389.
24. J. Yang, A. Banerjee, S. Sugiyama and S. Guha, `Recent progress in amorphous silicon alloy leading to 13%
stable cell eciency', Conf. Rec. 26th IEEE Photovoltaic Specialists Conference, Anaheim, September/October
1997, in print.
25. J. Zhao, A. Wang, F. Yun, G. Zhang, D. M. Roche, S. R. Wenham and M. A. Green, `20,000 PERL silicon cells
for the 1996 World Solar Challenge Solar Car Race', Prog. Photovolt. Res. Appl., 5, 269賊276 (1997).
26. D. L. King, W. K. Schubert and T. D. Hund, `World's 速rst 15% eciency multicrystalline silicon modules',
Conf. Rec. 1st World Conference on Photovoltaic Energy Conversion, Hawaii, December 1994, pp. 1660賊1662.
27. J. Yang, A. Banerjee, T. Glatfelter, K. Homan, X. Xu and S. Guha, `Progress in triple-junction amorphous
silicon-based alloy solar cells and modules using hydrogen dilution', Conf. Rec. 1st World Conference on
Photovoltaic Energy Conversion, Hawaii, December 1994, pp. 380賊385.
28. S. M. Vernon, S. P. Tobin, V. E. Haven, L. M. Georoy and M. M. Sanfacon, `High-eciency concentrator cells
from GaAs on Si', Conf. Rec. 22nd IEEE Photovoltaic Specialists Conference, Las Vegas, October 1991,
pp. 353賊357.
29. J. S. Ward, M. W. Wanlass, T. J. Coutts, K. A. Emery and C. R. Osterwald, `InP concentrator solar cells', Conf.
Rec. 22nd IEEE Photovoltaic Specialists Conference, Las Vegas, October 1991, pp. 365賊370.
30. P. J. Verlinden, R. M. Swanson, R. A. Crane, K. Wickham and J. Perkins, `A 26.8% Ecient concentrator
point-contact solar cell', Conf. Rec. 13th European Photovoltaic Solar Energy Conference, Nice, October 1995,
pp. 1582賊1585.
31. F. Zhang, S. R. Wenham and M. A. Green, `Large area, concentrator buried contact solar cells', IEEE Trans. on
Electron Devices, 42, 144賊149 (1995).
32. M. W. Wanlass, T. J. Coutts, J. S. Ward and K. A. Emery, `High-eciency heteroepitaxial InP solar cells', Conf.
Rec. 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, pp. 159賊165.
33. L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Kinh, T. M. Davenport, J. W. Yerkes, J. M. Gee and K. A.
Emery, `Over 35% ecient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications', Conf.
Rec. 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, pp. 190賊195.
34. M. W. Wanlass, T. J. Coutts, J. S. Ward, K. A. Emery, T. A. Gessert and C. R. Osterwald, `Advanced high-
eciency concentrator tandem solar cells', Conf. Rec. 21st IEEE Photovoltaic Specialists Conference,
Kissimimee, May 1990, pp. 38賊45.
35. D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibble, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen
and J. K. Snyder, `30.2% Ecient GaInP/GaAs monolithic two-terminal tandem concentrator cell', Prog.
Photovolt. Res. Appl., 3, 47賊50 (1995).
36. J. M. Gee and G. F. Virshup, `A 30%-ecient GaAs/Silicon mechanically stacked, multijunction concentrator
solar cell', Conf. Rec. 20th IEEE Photovoltaic Specialists Conference, Las Vegas, September 1988, pp. 754賊758.
37. C. J. Chiang and E. H. Richards, `A 20% ecient photovoltaic concentrator module', Conf. Rec. 21st IEEE
Photovoltaic Specialists Conference, Kissimimee, May 1990, pp. 861賊863.
38. J. Knobloch, S. W. Glunz, D. Biro, W. Warta, E. Scha
er and W. Wettling, `Solar cells with eciencies above
21% processed from Czochralski grown silicon', Conf. Rec. 25th IEEE Photovoltaic Specialists Conference,
Washington, May 1996, pp. 405賊408.
# 1998 John Wiley & Sons, Ltd. Prog. Photovolt. Res. Appl., 6, 35賊42 (1998)
SOLAR CELL EFFICIENCY TABLES 41
8. 39. A. Wang, J. Zhao, S. R. Wenham and M. A. Green, `21.5% Ecient thin silicon solar cell', Prog. Photovolt. Res.
Appl., 4, 55賊58 (1996).
40. C. Hebling, S. W. Glunz, J. O. Schumacher and J. Knobloch, `High-eciency (19.2%) silicon thin-速lm solar cells
with interdigitated emitter and base-front-contact', Conf. Rec. 14th European Photovoltaic Solar Energy
Conference, Barcelona, July 1997, in print.
41. H. Lautenschlager, F. Lutz, C. Schetter, U. Schubert and R. Schindler, `Mc-silicon solar cells with 417%
eciency', Conf. Rec. 26th IEEE Photovoltaic Specialists Conference, Anaheim, September 1997, in print.
42. H. Nakaya, M. Nishida, Y. Takeda, S. Moriuchi, T. Tonegawa, T. Machida and T. Nunoi, `Polycrystalline
silicon solar cells with V-grooved surface', Sol. Energy Mater. Sol. Cells, 34, 219賊225 (1994).
43. C. Hebling, S. Reber, K. Schmidt, R. Lu
dermann and F. Lutz, `Oriented recrystallization of silicon layers for
silicon thin-速lm solar cells', Conf. Rec. 26th IEEE Photovoltaic Specialists Conference, Anaheim, September
1997, in print.
44. Y. C. M. Yeh, C. Chang, F. Ho and H. Yoo, `Large scale, high eciency GaAs/Ge cell production', Conf. Rec.
21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, pp. 79賊83.
45. J. R. Tuttle, J. S. Ward, A. Duda, T. A. Berens, M. A. Contreras, K. R. Ramanathan, A. L. Tennant, J. Keane,
E. D. Cole, K. Emery and R. Nou速, `The performance of Cu(In,Ga)Se2-based solar cells in conventional and
concentrator applications', Conf. Proc. of 1996 Spring Materials Research Society, San Francisco, April 1996,
Vol. 426, pp. 143賊152.
46. R. R. Schmit, J. S. Reynolds, J. K. Arch and G. D. Stevens, `The eect of silicon purity on Spheral Solar2 cell
processing and performance', Conf. Rec. 24th IEEE Photovoltaic Specialists Conference, Hawaii, December 1994,
pp. 1603賊1606.
47. H. S. Ullal, K. Zweibel and B. G. von Roedern, `Current status of polycrystalline thin-速lm technologies',
Conf. Rec. 26th IEEE Photovoltaic Specialists Conference, Anaheim, September/October 1997, in print.
# 1998 John Wiley & Sons, Ltd. Prog. Photovolt. Res. Appl., 6, 35賊42 (1998)
42 M. A. GREEN ET AL.