狠狠撸

狠狠撸Share a Scribd company logo
Guided Filterとその周辺

    名古屋工業大学
     福嶋慶繁



         2012/7/21 第18回 名古屋CV?PRML勉強会
紹介論文
? J. Lu, K. Shi, D. Min, L. Lin, and M. N. Do,
  “Cross-Based Local Multipoint Filtering,”
  CVPR2012.
? 内容:
  高速なエッジキープ型のフィルタの
                    拡張とアプリケーション例

  – 注)細かいところはカットしています
  –   なかなか本題にはいりません.
関連論文
?   Bilateral Filterの論文
     –   C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and Color Images,” ICCV’98.
?   Joint/Cross Bilarater Filterによるデノイズ
     –   G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, K. Toyama, “Digital Photography with
         Fash and No-?ash Image Pairs,” SIGGRAPH’04.
     –   E. Eisemann and F. Durand, “Flash Photography Enhancement via Intrinsic Relighting,” SIGGRAPH’04.
?   Joint Bilateral Filterを~mapに適用して解像度やノイズ除去
     –   J. Kopf,M. F. Cohen,D. Lischinski and M. Uyttendaele, “Joint bilateral upsampling,” SIGGRAPH’07
?   NLFによるデノイズ
     –   A. Buades, B. Coll, J.M. Morel, “A Non-local Algorithm for Image Denoising,” CVPR’05.
?   Guided Filterの論文
     –   K. He, J. Sun and X. Tang, “Guided Image Filtering,” ECCV’10.
?   Guided Filterをコストボリュームに適用することによる応用の拡張
     –   C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, ”Fast Cost-volume Filtering for Visual
         Correspondence and Beyond,” CVPR’11.
?   クロススケルトンによる適用的インテグラルイメージ
     –   K. Zhang, J. Lu, and G. Lafruit, “Cross-Based Local Stereo Matching Using Orthogonal Integral
         Images,” IEEE Trans. CSVT’09.
エッジキープ型のフィルタって
      何?
ぼけないフィルタ
ボケすぎないフィルタ
エッジキープ型のフィルタの例
?   Median Filter
?   (joint/cross) Bilateral Filter
?   Non-local Means Filter
?   BM3D
?   Guided Filter
?   (Cross-Orthogonal integral Image)
エッジキープ型のフィルタの応用
? ノイズ除去
? 輪郭強調
 – 上記組み合わせの画像処理


? HDR
? 超解像
? MRFによる奥行き推定,背景差分,オプティカ
  ルフローの最適化の近似
Bilateral Filter
Joint/Cross Bilateral Filter



image




 IR image/Flash image
Joint/Cross Bilateral Filter



image




 IR image/Flash image
ガイデットフィルタとその周辺
ガイデットフィルタとその周辺
ガイデットフィルタとその周辺
median
? Joint/Cross Filterの本当の効果
  – ノイズ除去...それだけ?


Graph cut ? Belief Propagation ?
           そんな重たいもの使わなくても!?
  – Ex:
    C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz,
    ”Fast Cost-volume Filtering for Visual Correspondence   and Beyond,”
    CVPR’11.
Joint/cross filterの使い方
? 結果にフィルタ
 – ~ map refinement/enhancement
 – 計算結果のポストフィルタとして利用


? 尤度にフィルタ
 – Cost volume filtering
 – 尤度を量子化してその尤度mapを各量子化ス
   テップでフィルタしてその最小値?最大値を取る
Joint/Cross Filtering for BF Map




            + thresholdingで背景差分のrefinementにもなります.
Joint/Cross Filtering for Depth Map
Joint/Cross Filtering for Haze Map
Cost-Volume Filtering
? Markov Random Field(MRF)などのエネルギー関数は,
  データ項とスムース項が,有る値(ただし量子化ステップ内
  の離散値)を取るときの値を最小化,最大化する(p:画素
  位置,l:ラベルor階調値)
     E(p,l) = Ed(p,l) + λEs(p,l)
? これをスムース項の代わりにフィルタとしてほぼ同じ意味
  になるように表現(w:重み)
     E(p,l) = ΣW(p,q) Ed(p,l)
? つまり,データ項が滑らかに変化するように&参照画像の
  エッジをキープするように平滑化する.
? どちらかというとCRFに近い結果
? もうちょっと抽象的に説明すると,MRF最適化はコストボ
  リュームにIIRフィルタをかけているのに近い.
Cost-Volume Filtering
? マルチラベル問題全般に使用可能
 – ステレオ,背景差分オプティカルフロー,アルファマッティング,顕著
   性マップ,xx map, etc…すべてに使用可能
? ステレオマッチングを例に説明
Cost-Volume Filtering
? マッチングコストの計算
? COST(p,d) = L(p) – R(p-d) :d=0




             d=0                   -
Cost-Volume Filtering
? マッチングコストの計算
? COST(p,d) = L(p) – R(p-d) :d=1




             d=1                   -
Cost-Volume Filtering
? マッチングコストの計算
? COST(p,d) = L(p) – R(p-d) :d=2




             d=2                   -
Cost-Volume Filtering
? マッチングコストの計算
? COST(p,d) = L(p) – R(p-d) :d=3




             d=3                   -
Cost-Volume Filtering
? マッチングコストの計算
? COST(p,d) = L(p) – R(p-d) :d=4




             d=4                   -
Cost-Volume Filtering
? マッチングコストの計算
? COST(p,d) = L(p) – R(p-d) :d=5




             d=5                   -
Cost-Volume Filtering
? マッチングコストの計算
? COST(p,d) = L(p) – R(p-d) :d=6




             d=6                   -
Cost-Volume Filtering
? マッチングコストの計算
? COST(p,d) = L(p) – R(p-d) :d=0




             d=7                   -
Cost-Volume Filtering
     マッチングスコア,尤度マップ




  d=6
  d=5
  d=4   マッチングスコアボリューム
  d=3
  d=2   別名: Disparity Space Volume DSV
  d=1
  d=0
Cost-Volume Filtering
もっともスコアの低いもしくは尤度の高いものをその値として採用




       d=6
       d=5
       d=4       安定度が低い
       d=3
       d=2
       d=1
       d=0   DMAP(p) = argmindCOST(p,d)
Cost-Volume Filtering
argmin: もっちもスコアの低いもしくは尤度の高いものをその値として採用




           d=6
           d=5
           d=4    マッチングスコアにフィルタする
           d=3
           d=2    (Box Filterで→Block Matching)
           d=1
           d=0    安定するが境界がおかしい
Cost-Volume Filtering
argmin: もっちもスコアの低いもしくは尤度の高いものをその値として採用




           d=6
           d=5
           d=4    マッチングスコアにフィルタする
           d=3
           d=2    (Joint Bilateral Filterで)
           d=1    エッジもきれいに!
           d=0
フィルタの欠点
? フィルタって,基本的なものだけど大きなカー
  ネルだと計算は重たい.
? カーネルサイズ分の計算コスト!O(K)
? 特にバイラテラルフィルタは重たいことで有名

? ただし,いろいろ高速化方法はある!
本题の一歩手前
Guided Filter
? エッジ保持型のO(1)フィルタ
? バイラテラルフィルタに似た効果

? FullHDの画像をCore i7を使って30fpsでフィル
  タ可能

? GPUならさらにその十倍!?
Guided Filter詳細
? 入力画像pはガイド画像Iのカーネル内の適当な
  係数の線形変換であると仮定
 –   カーネル内にエッジは一つ
 –   ?q = a?I
 –   マッティングや超解像などに使われる
 –   (係数a,bに入力画像pを用いる)

       qi ? ak I i ? bk , ?i ? ?k
 ある画像を線形変換(ax+b)すると目的の画像へ変わる
qi ? ak I i ? bk , ?i ? ?k の図解

                      ak                         カーネル   ?k


      qi
                  =   coefficient Image: a
                                             ?          Ii


                      bk

Output Image: q                                   Guidance Image: I




                      coefficient Image: b
qi ? ak I i ? bk , ?i ? ?k の図解

                                   ak            カーネル   ?k


      qi
                  =   coefficient Image: a
                                             ?          Ii


                                  bk

Output Image: q                                   Guidance Image: I




                      coefficient Image: b
qi ? ak I i ? bk , ?i ? ?k の図解

                      ak
                                                 カーネル   ?k


      qi
                  =   coefficient Image: a
                                             ?          Ii



                      bk
Output Image: q                                   Guidance Image: I




                      coefficient Image: b
qi ? ak I i ? bk , ?i ? ?k の図解

                                   ak
                                                 カーネル   ?k


      qi
                  =   coefficient Image: a
                                             ?          Ii



                                  bk
Output Image: q                                   Guidance Image: I




                      coefficient Image: b
qi ? ak I i ? bk , ?i ? ?k の図解

                                                 カーネル   ?k
                      ak


      qi
                  =   coefficient Image: a
                                             ?          Ii




Output Image: q                                   Guidance Image: I


                      bk

                      coefficient Image: b
qi ? ak I i ? bk , ?i ? ?k の図解

                                                 カーネル   ?k
                                   ak


      qi
                  =   coefficient Image: a
                                             ?          Ii




Output Image: q                                   Guidance Image: I


                                  bk

                      coefficient Image: b
カーネル内の全ての係数で,辩=补滨+产が成り立つように係数を决定




つまり,あるカーネル内での線形最小二乗

   ?qi ? ? a1 I i ? b1 ? ? a1        b1 ? ? I i     1?
   ?q ? ? a I ? b ? ? a              b2 ? ? I i     1?
   ? i? ? 2 i 2 ? ? 2                     ? ?        ?
   ?qi ? ? ?       ?       ??? ?      ? ? ? ?Ii     1?
   ? ? ?                   ? ?            ? ?        ?
   ?qi ? ?ak ?1 I i ? bk ? ? ?ak ?1 bk ?1 ? ? I i   1?
   ?qi ? ? ak I i ? bk ? ? ak
   ? ? ?                   ? ?       bk ? ? I i
                                          ? ?       1?
                                                     ?
線形回帰



入力画素値pと出力qを誤差εのもとに線形回帰




                 μ:Iのカーネル内平均
                 σ:Iのカーネル内分散

上の解析解
元の式に戻ると,补,产はもちろんノイズを含み,どの办を选ぶかによって出力が违う


     qi ? ak I i ? bk , ?i ? ?k

こういうときはとりあえず平均!
バイラテラルフィルタのように変形



Ex:バイラテラルフィルタの場合




                   赤点中心のカーネル.
                   左:参照画像
                   中:guided kernel
                   右:bilateral kernel

                   白いほど重みが大きい
カーネルの意味


       エッジが1つしかないと仮定しているため左の図解となる.

       画素iをフィルタ位置としたときの参照画素jの重み:
       右辺は,概ね,I,jの画素値が同じなら1をとり,
       逆ならー1を取る.つまり重みは大体0~2.
       εの値が大きいと重みはほぼ1になる.




※この変形した様子から天下り的に理解したほうが分かりやすいかも
このフィルタ実は非常に高速
? フィルタ計算が全てボックスフィルタと1画素
  同士の加減算,乗算で出来ている.
? つまり,全てO(1)計算.
? イメージ:下のような処理を何回かやるだけ
 – 画像1と画像2を掛ける
 – それをボックスフィルタ
 – それを画像1と画像2のボックスフィルタをしたも
   のどうしをかけたものから引く
復習:インテグラルイメージ(1/2)
? フィルタとは?
    カーネルのたたみこみ
  普通,O(k)(kはカーネルサイズ)だけ計算時
  間が必要
復習:インテグラルイメージ(1/2)
? フィルタとは?
    カーネルのたたみこみ
  普通,O(k)(kはカーネルサイズ)だけ計算時
  間が必要
復習:インテグラルイメージ(1/2)
? フィルタとは?
    カーネルのたたみこみ
  普通,O(k)(kはカーネルサイズ)だけ計算時
  間が必要
復習:インテグラルイメージ(1/2)
? フィルタとは?
    カーネルのたたみこみ
  普通,O(k)(kはカーネルサイズ)だけ計算時
  間が必要
        5x5のカーネルの場合1画素ごとに25回の演算が必要

        ただし,ボックスフィルタのカーネルは全て1.
             (バイラテラルフィルタなどは画素ごとに違う)

               1   1   1   1   1
               1   1   1   1   1
               1   1   1   1   1
               1   1   1   1   1
               1   1   1   1   1
復習:インテグラルイメージ(2/2)
1.積分画像を作成
(サイズは(x+1,y+1)で左上を0でパディング
積分画像とは?
左上から注目画素までの矩形の値の
総和を保持した画像
左上から順々に足していくだけ
                     積分値




2.4つの値の加減算で矩形の面積を求める
復習:インテグラルイメージ(2/2)
1.積分画像を作成
(サイズは(x+1,y+1)で左上を0でパディング
積分画像とは?
左上から注目画素までの矩形の値の
総和を保持した画像
左上から順々に足していくだけ
                     積分値




2.4つの値の加減算で矩形の面積を求める
復習:インテグラルイメージ(2/2)
1.積分画像を作成
(サイズは(x+1,y+1)で左上を0でパディング
積分画像とは?
左上から注目画素までの矩形の値の
総和を保持した画像
左上から順々に足していくだけ
                     積分値




2.4つの値の加減算で矩形の面積を求める
復習:インテグラルイメージ(2/2)
1.積分画像を作成
(サイズは(x+1,y+1)で左上を0でパディング
積分画像とは?
左上から注目画素までの矩形の値の
総和を保持した画像
左上から順々に足していくだけ
                     積分値




2.4つの値の加減算で矩形の面積を求める
復習:インテグラルイメージ(2/2)
1.積分画像を作成
(サイズは(x+1,y+1)で左上を0でパディング
積分画像とは?
左上から注目画素までの矩形の値の
総和を保持した画像
左上から順々に足していくだけ
                     積分値




2.4つの値の加減算で矩形の面積を求める
復習:インテグラルイメージ(2/2)
1.積分画像を作成
(サイズは(x+1,y+1)で左上を0でパディング
積分画像とは?
左上から注目画素までの矩形の値の
総和を保持した画像
左上から順々に足していくだけ
                     積分値




2.4つの値の加減算で矩形の面積を求める
復習:インテグラルイメージ(2/2)
1.積分画像を作成
(サイズは(x+1,y+1)で左上を0でパディング
積分画像とは?
左上から注目画素までの矩形の値の
総和を保持した画像
左上から順々に足していくだけ
                     積分値




2.4つの値の加減算で矩形の面積を求める
やっと本题
Guided Filterの制限
? フラットな平滑化が出来ない(L0のような)
 – つまりエッジと勾配を維持するフィルタ


? 勾配はほとんどないと仮定できるときはエッジの
  み維持したフィルタにしたい
 – BFやNLFはエッジ保持のみのフィルタで勾配は保持さ
   れない


? ハイコントラストエッジ周辺は実はうまくいかない
ハイコントラストエッジ周辺の问题
今回の論文の拡張部分!
? とりあえず平均が気に食わない!全領域で線形回帰
  はあり得ない!
  – 係数a,bはオブジェクトの属する領域によって大きく変化す
    るはず!

? Cross-Based Local Multipoint Filtering(CLMF)
                                       と名付けよう

? 同一領域以外は平均に使わないようにしたい
? でも同一領域を決めるために,セグメンテーションした
  ら,このフィルタの高速性が生きない...
カーネル内の全ての係数で,辩=补滨+产が成り立つように係数を决定
    条件を満たす場所だけで
あるカーネル内での重み付き線形最小二乗
重みwik(画素位置iの時のカーネル位置kの時の重み)
※厳密に調べていないが,ほぼWLSと同じ式?
A. Levin, D. Lischinski, Y. Weiss, “Colorization using optimization,” SIGGRAPH’04.
Z. Farbman, R. Fattal, D. Lischinski, R. Szeliski, “Edge-preserving decompositions for multi-scale tone
                                                            and detail manipulation,” SIGGRAPH’08.



    ?qi ? ? a1 I i ? b1 ? ? wi1                          wi1 ? ? a1      b1 ? ? I i                1?
    ?q ? ? a I ? b ? ? i                                   i ? ?
                                                                   a2    b2 ? ? I i                1?
    ? i? ? 2 i 2 ? ? w 2                                w2 ? ?                ? ?                   ?
    ?qi ? ? ?       ?       ???                                ??? ?      ? ? ? ?Ii                1?
    ? ? ?                   ? ? i                              ? ?            ? ?                   ?
    ?qi ? ?ak ?1 I i ? bk ? ? ? w k ?1
                                                         i
                                                        w k ?1 ? ?ak ?1 bk ?1 ? ? I i              1?
    ?qi ? ? ak I i ? bk ? ? wi k
    ? ? ?                   ? ?                         wi k ? ? a k
                                                               ? ?       bk ? ? I i
                                                                              ? ?                  1?
                                                                                                    ?
? 1画素ごとに重み付き最小二乗を解いていた
  らとてもじゃないけど計算が複雑.

? 重みを0/1にしたら簡単な解法が!
カーネル内の全ての係数で,辩=补滨+产が成り立つように係数を决定
    条件を満たす場所だけで

あるカーネル内での重み付き線形最小二乗
※重みwik(画素位置iの時のカーネル位置kの時の重み)
          は,0 or 1のhard thresholding

 ?qi ? ? a1 I i ? b1 ? ? wi1           wi1 ? ? a1      b1 ? ? I i     1?
 ?q ? ? a I ? b ? ? i                    i ? ?
                                                 a2    b2 ? ? I i     1?
 ? i? ? 2 i 2 ? ? w 2                 w2 ? ?                ? ?        ?
 ?qi ? ? ?       ?       ???                 ??? ?      ? ? ? ?Ii     1?
 ? ? ?                   ? ? i               ? ?            ? ?        ?
 ?qi ? ?ak ?1 I i ? bk ? ? ? w k ?1
                                       i
                                      w k ?1 ? ?ak ?1 bk ?1 ? ? I i   1?
 ?qi ? ? ak I i ? bk ? ? wi k
 ? ? ?                   ? ?          wi k ? ? a k
                                             ? ?       bk ? ? I i
                                                            ? ?       1?
                                                                       ?
Cross based local filter (CLF)
? 形が適応的なジョイントボックスフィルタ
  Integral Imageを使用
                      普通のボックスフィルタ
                      重みが一定の矩形フィルタ

                      Integral image によりO(1)で計算可能



           p
Cross based local filter (CLF)
? 形が適応的なジョイントボックスフィルタ
 – Cross Based Orthogonal Integral Imageを使用
                               OIIを使った適応的ボックスフィルタ
                               重みが0or1と適応的に変化するフィルタ

                               通常ならフィルタ半径内の係数を
                               計算しなければならないが...
Cross based local filter (CLF)
? 形が適応的なジョイントボックスフィルタ
 – Cross Based Orthogonal Integral Imageを使用
                               下記手順でO(1)化

                               フィルタターゲットのエッジなどの情報を
                               用いてクロス(十字)を作成

                               まず,水平にインテグラルイメージ作成
                               各画素のクロスの水平成分に沿った
                               積分値を計算.

                               最後に縦方向に同様の処理

                               セパレータブルフィルタと同じような原理
クロスの計算方法
? argmax r
? for r = 0:max r V(p) < V(p-r)
クロスとカーネルの例




(a) クロス
(b) 積分領域拡大図
(c) さまざまな积分区间の例
GF→CLMFへの式変形
? Σの係数の平均?分散の計算(つまりボックスフィ
  ルタ)を全部COIIに変換するだけの簡単なお仕
  事.
? 最後の係数a,bについては有効な画素の多さに
  応じて重み付き平均
 – Weighted averageもO(1)で計算可能
 – ex) 重み画像W,入力画像Iとしてその重み付き平均
 – W-Average(W,I) = 1/ΣW * ΣI*W
? 計算コストはO(1)のまま
GF→CLMFへの式変形
? ついでにGuided Filterをより一般化
 – aX+bで変換する1次変換
 – X+bで変換する0次変換
                      に拡張
フィルタの効果まとめ



バイラテラル:     点ベースでエッジのみを保持.
                速度は遅い.かなり遅い.
CLF:            点ベースでエッジのみを保持.
                速度は最高速.ただし,クロスの計算がO(W+H)
CLMF-0(提案): 多点ベースでエッジのみを保持.
                速度は最高速(2番目)
GF(従来):     多点ベースでエッジと勾配を保持.
                速度はそこそこ高速(3番目)core i7FulHD→30fps
CLMF-1(提案): 多点ベースでエッジと勾配みを保持.
                速度はそこそこ高速(4番目)おそらくGFの2倍以内
結果
?   平滑化結果
?   ノイズリダクション
?   ステレオ
?   Flash-no-flashイメージ
エッジ保持平滑化结果
ガイデットフィルタとその周辺
ノイズリダクション
Depth estimation over CVF
Depth upsampling(x8) &
 Depth noise reduntion
Flash/No-Flash
まとめ
? エッジ保持型のフィルタBilateral FilterのJoint
  bilateral filterへの拡張とその応用例の解説

? 高速なエッジ保持フィルタGuided Filter(GF)
  の解説

? GFの拡張CLMFの解説(ここが主題)

More Related Content

What's hot (20)

3D CNNによる人物行動認識の動向
3D CNNによる人物行動認識の動向3D CNNによる人物行動認識の動向
3D CNNによる人物行動認識の動向
Kensho Hara
?
coordinate descent 法について
coordinate descent 法についてcoordinate descent 法について
coordinate descent 法について
京都大学大学院情报学研究科数理工学専攻
?
【顿尝轮読会】贬别虫笔濒补苍别と碍-笔濒补苍别蝉
【顿尝轮読会】贬别虫笔濒补苍别と碍-笔濒补苍别蝉【顿尝轮読会】贬别虫笔濒补苍别と碍-笔濒补苍别蝉
【顿尝轮読会】贬别虫笔濒补苍别と碍-笔濒补苍别蝉
Deep Learning JP
?
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields
cvpaper. challenge
?
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Yusuke Uchida
?
摆顿尝轮読会闭相互情报量最大化による表现学习
摆顿尝轮読会闭相互情报量最大化による表现学习摆顿尝轮読会闭相互情报量最大化による表现学习
摆顿尝轮読会闭相互情报量最大化による表现学习
Deep Learning JP
?
厂颈蹿迟特徴量について
厂颈蹿迟特徴量について厂颈蹿迟特徴量について
厂颈蹿迟特徴量について
la_flance
?
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Deep Learning JP
?
自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)
cvpaper. challenge
?
モデル高速化百选
モデル高速化百选モデル高速化百选
モデル高速化百选
Yusuke Uchida
?
[DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Se...
 [DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Se... [DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Se...
[DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Se...
Deep Learning JP
?
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
Deep Learning JP
?
深层生成モデルを用いたマルチモーダル学习
深层生成モデルを用いたマルチモーダル学习深层生成モデルを用いたマルチモーダル学习
深层生成モデルを用いたマルチモーダル学习
Masahiro Suzuki
?
画像认识の初歩、厂滨贵罢,厂鲍搁贵特徴量
画像认识の初歩、厂滨贵罢,厂鲍搁贵特徴量画像认识の初歩、厂滨贵罢,厂鲍搁贵特徴量
画像认识の初歩、厂滨贵罢,厂鲍搁贵特徴量
takaya imai
?
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
Deep Learning JP
?
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
Deep Learning JP
?
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII
?
贰尝叠翱型痴础贰のダメなところ
贰尝叠翱型痴础贰のダメなところ贰尝叠翱型痴础贰のダメなところ
贰尝叠翱型痴础贰のダメなところ
KCS Keio Computer Society
?
【チュートリアル】コンピュータビジョンによる动画认识
【チュートリアル】コンピュータビジョンによる动画认识【チュートリアル】コンピュータビジョンによる动画认识
【チュートリアル】コンピュータビジョンによる动画认识
Hirokatsu Kataoka
?
マルチコアを用いた画像処理
マルチコアを用いた画像処理マルチコアを用いた画像処理
マルチコアを用いた画像処理
Norishige Fukushima
?
3D CNNによる人物行動認識の動向
3D CNNによる人物行動認識の動向3D CNNによる人物行動認識の動向
3D CNNによる人物行動認識の動向
Kensho Hara
?
【顿尝轮読会】贬别虫笔濒补苍别と碍-笔濒补苍别蝉
【顿尝轮読会】贬别虫笔濒补苍别と碍-笔濒补苍别蝉【顿尝轮読会】贬别虫笔濒补苍别と碍-笔濒补苍别蝉
【顿尝轮読会】贬别虫笔濒补苍别と碍-笔濒补苍别蝉
Deep Learning JP
?
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields
cvpaper. challenge
?
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Yusuke Uchida
?
摆顿尝轮読会闭相互情报量最大化による表现学习
摆顿尝轮読会闭相互情报量最大化による表现学习摆顿尝轮読会闭相互情报量最大化による表现学习
摆顿尝轮読会闭相互情报量最大化による表现学习
Deep Learning JP
?
厂颈蹿迟特徴量について
厂颈蹿迟特徴量について厂颈蹿迟特徴量について
厂颈蹿迟特徴量について
la_flance
?
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Deep Learning JP
?
自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)
cvpaper. challenge
?
モデル高速化百选
モデル高速化百选モデル高速化百选
モデル高速化百选
Yusuke Uchida
?
[DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Se...
 [DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Se... [DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Se...
[DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Se...
Deep Learning JP
?
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
Deep Learning JP
?
深层生成モデルを用いたマルチモーダル学习
深层生成モデルを用いたマルチモーダル学习深层生成モデルを用いたマルチモーダル学习
深层生成モデルを用いたマルチモーダル学习
Masahiro Suzuki
?
画像认识の初歩、厂滨贵罢,厂鲍搁贵特徴量
画像认识の初歩、厂滨贵罢,厂鲍搁贵特徴量画像认识の初歩、厂滨贵罢,厂鲍搁贵特徴量
画像认识の初歩、厂滨贵罢,厂鲍搁贵特徴量
takaya imai
?
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
Deep Learning JP
?
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
Deep Learning JP
?
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII
?
【チュートリアル】コンピュータビジョンによる动画认识
【チュートリアル】コンピュータビジョンによる动画认识【チュートリアル】コンピュータビジョンによる动画认识
【チュートリアル】コンピュータビジョンによる动画认识
Hirokatsu Kataoka
?
マルチコアを用いた画像処理
マルチコアを用いた画像処理マルチコアを用いた画像処理
マルチコアを用いた画像処理
Norishige Fukushima
?

More from Norishige Fukushima (16)

画像処理の高性能计算
画像処理の高性能计算画像処理の高性能计算
画像処理の高性能计算
Norishige Fukushima
?
计算スケジューリングの効果~もし,贬补濒颈诲别がなかったら?~
计算スケジューリングの効果~もし,贬补濒颈诲别がなかったら?~计算スケジューリングの効果~もし,贬补濒颈诲别がなかったら?~
计算スケジューリングの効果~もし,贬补濒颈诲别がなかったら?~
Norishige Fukushima
?
多チャンネルバイラテラルフィルタの高速化
多チャンネルバイラテラルフィルタの高速化多チャンネルバイラテラルフィルタの高速化
多チャンネルバイラテラルフィルタの高速化
Norishige Fukushima
?
计算机アーキテクチャを考虑した高能率画像処理プログラミング
计算机アーキテクチャを考虑した高能率画像処理プログラミング计算机アーキテクチャを考虑した高能率画像処理プログラミング
计算机アーキテクチャを考虑した高能率画像処理プログラミング
Norishige Fukushima
?
3次元计测とフィルタリング
3次元计测とフィルタリング3次元计测とフィルタリング
3次元计测とフィルタリング
Norishige Fukushima
?
デプスセンサとその応用
デプスセンサとその応用デプスセンサとその応用
デプスセンサとその応用
Norishige Fukushima
?
画像処理ライブラリ OpenCV で 出来ること?出来ないこと
画像処理ライブラリ OpenCV で 出来ること?出来ないこと画像処理ライブラリ OpenCV で 出来ること?出来ないこと
画像処理ライブラリ OpenCV で 出来ること?出来ないこと
Norishige Fukushima
?
复数台の碍颈苍别肠迟痴2の使い方
复数台の碍颈苍别肠迟痴2の使い方复数台の碍颈苍别肠迟痴2の使い方
复数台の碍颈苍别肠迟痴2の使い方
Norishige Fukushima
?
Libjpeg turboの使い方
Libjpeg turboの使い方Libjpeg turboの使い方
Libjpeg turboの使い方
Norishige Fukushima
?
Comparison between Blur Transfer and Blur Re-Generation in Depth Image Based ...
Comparison between Blur Transfer and Blur Re-Generation in Depth Image Based ...Comparison between Blur Transfer and Blur Re-Generation in Depth Image Based ...
Comparison between Blur Transfer and Blur Re-Generation in Depth Image Based ...
Norishige Fukushima
?
Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...
Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...
Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...
Norishige Fukushima
?
コンピュテーショナルフォトグラフティの基础
コンピュテーショナルフォトグラフティの基础コンピュテーショナルフォトグラフティの基础
コンピュテーショナルフォトグラフティの基础
Norishige Fukushima
?
笔辞辫肠苍迟によるハミング距离计算
笔辞辫肠苍迟によるハミング距离计算笔辞辫肠苍迟によるハミング距离计算
笔辞辫肠苍迟によるハミング距离计算
Norishige Fukushima
?
翱辫别苍颁痴の拡张ユーティリティ関数群
翱辫别苍颁痴の拡张ユーティリティ関数群翱辫别苍颁痴の拡张ユーティリティ関数群
翱辫别苍颁痴の拡张ユーティリティ関数群
Norishige Fukushima
?
奥别产笔入门
奥别产笔入门奥别产笔入门
奥别产笔入门
Norishige Fukushima
?
组み込み関数(颈苍迟谤颈苍蝉颈肠)による厂滨惭顿入门
组み込み関数(颈苍迟谤颈苍蝉颈肠)による厂滨惭顿入门组み込み関数(颈苍迟谤颈苍蝉颈肠)による厂滨惭顿入门
组み込み関数(颈苍迟谤颈苍蝉颈肠)による厂滨惭顿入门
Norishige Fukushima
?
计算スケジューリングの効果~もし,贬补濒颈诲别がなかったら?~
计算スケジューリングの効果~もし,贬补濒颈诲别がなかったら?~计算スケジューリングの効果~もし,贬补濒颈诲别がなかったら?~
计算スケジューリングの効果~もし,贬补濒颈诲别がなかったら?~
Norishige Fukushima
?
多チャンネルバイラテラルフィルタの高速化
多チャンネルバイラテラルフィルタの高速化多チャンネルバイラテラルフィルタの高速化
多チャンネルバイラテラルフィルタの高速化
Norishige Fukushima
?
计算机アーキテクチャを考虑した高能率画像処理プログラミング
计算机アーキテクチャを考虑した高能率画像処理プログラミング计算机アーキテクチャを考虑した高能率画像処理プログラミング
计算机アーキテクチャを考虑した高能率画像処理プログラミング
Norishige Fukushima
?
3次元计测とフィルタリング
3次元计测とフィルタリング3次元计测とフィルタリング
3次元计测とフィルタリング
Norishige Fukushima
?
画像処理ライブラリ OpenCV で 出来ること?出来ないこと
画像処理ライブラリ OpenCV で 出来ること?出来ないこと画像処理ライブラリ OpenCV で 出来ること?出来ないこと
画像処理ライブラリ OpenCV で 出来ること?出来ないこと
Norishige Fukushima
?
复数台の碍颈苍别肠迟痴2の使い方
复数台の碍颈苍别肠迟痴2の使い方复数台の碍颈苍别肠迟痴2の使い方
复数台の碍颈苍别肠迟痴2の使い方
Norishige Fukushima
?
Comparison between Blur Transfer and Blur Re-Generation in Depth Image Based ...
Comparison between Blur Transfer and Blur Re-Generation in Depth Image Based ...Comparison between Blur Transfer and Blur Re-Generation in Depth Image Based ...
Comparison between Blur Transfer and Blur Re-Generation in Depth Image Based ...
Norishige Fukushima
?
Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...
Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...
Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...
Norishige Fukushima
?
コンピュテーショナルフォトグラフティの基础
コンピュテーショナルフォトグラフティの基础コンピュテーショナルフォトグラフティの基础
コンピュテーショナルフォトグラフティの基础
Norishige Fukushima
?
笔辞辫肠苍迟によるハミング距离计算
笔辞辫肠苍迟によるハミング距离计算笔辞辫肠苍迟によるハミング距离计算
笔辞辫肠苍迟によるハミング距离计算
Norishige Fukushima
?
翱辫别苍颁痴の拡张ユーティリティ関数群
翱辫别苍颁痴の拡张ユーティリティ関数群翱辫别苍颁痴の拡张ユーティリティ関数群
翱辫别苍颁痴の拡张ユーティリティ関数群
Norishige Fukushima
?
组み込み関数(颈苍迟谤颈苍蝉颈肠)による厂滨惭顿入门
组み込み関数(颈苍迟谤颈苍蝉颈肠)による厂滨惭顿入门组み込み関数(颈苍迟谤颈苍蝉颈肠)による厂滨惭顿入门
组み込み関数(颈苍迟谤颈苍蝉颈肠)による厂滨惭顿入门
Norishige Fukushima
?

Recently uploaded (15)

第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
Matsushita Laboratory
?
贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
Matsushita Laboratory
?
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
sugiuralab
?
顿贰滨惭2025冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲厂丑颈苍办补飞补.辫诲蹿
顿贰滨惭2025冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲厂丑颈苍办补飞补.辫诲蹿顿贰滨惭2025冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲厂丑颈苍办补飞补.辫诲蹿
顿贰滨惭2025冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲厂丑颈苍办补飞补.辫诲蹿
Matsushita Laboratory
?
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
sugiuralab
?
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
harmonylab
?
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
harmonylab
?
田中瑠彗,东冈秀树,松下光范「手技疗法指导における动作指示の违いが指圧动作に及ぼす影响」
田中瑠彗,东冈秀树,松下光范「手技疗法指导における动作指示の违いが指圧动作に及ぼす影响」田中瑠彗,东冈秀树,松下光范「手技疗法指导における动作指示の违いが指圧动作に及ぼす影响」
田中瑠彗,东冈秀树,松下光范「手技疗法指导における动作指示の违いが指圧动作に及ぼす影响」
Matsushita Laboratory
?
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
Matsushita Laboratory
?
LoRaWANプッシュボタン PB05-L カタログ A4サイズ Draginoカタログ両面
LoRaWANプッシュボタン PB05-L カタログ A4サイズ Draginoカタログ両面LoRaWANプッシュボタン PB05-L カタログ A4サイズ Draginoカタログ両面
LoRaWANプッシュボタン PB05-L カタログ A4サイズ Draginoカタログ両面
CRI Japan, Inc.
?
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
Industrial Technology Research Institute (ITRI)(工業技術研究院, 工研院)
?
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
NTT DATA Technology & Innovation
?
顿贰滨惭2025冲厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援.辫诲蹿
顿贰滨惭2025冲厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援.辫诲蹿顿贰滨惭2025冲厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援.辫诲蹿
顿贰滨惭2025冲厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援.辫诲蹿
Matsushita Laboratory
?
自宅でも出来る!!VCF構築-概要編-JapanVMUG Spring Meeting with NEC
自宅でも出来る!!VCF構築-概要編-JapanVMUG Spring Meeting with NEC自宅でも出来る!!VCF構築-概要編-JapanVMUG Spring Meeting with NEC
自宅でも出来る!!VCF構築-概要編-JapanVMUG Spring Meeting with NEC
shomayama0221
?
LF Decentralized Trust Tokyo Meetup 3
LF Decentralized Trust Tokyo Meetup 3LF Decentralized Trust Tokyo Meetup 3
LF Decentralized Trust Tokyo Meetup 3
LFDT Tokyo Meetup
?
第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
Matsushita Laboratory
?
贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
Matsushita Laboratory
?
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
sugiuralab
?
顿贰滨惭2025冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲厂丑颈苍办补飞补.辫诲蹿
顿贰滨惭2025冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲厂丑颈苍办补飞补.辫诲蹿顿贰滨惭2025冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲厂丑颈苍办补飞补.辫诲蹿
顿贰滨惭2025冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲厂丑颈苍办补飞补.辫诲蹿
Matsushita Laboratory
?
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
sugiuralab
?
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
harmonylab
?
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
harmonylab
?
田中瑠彗,东冈秀树,松下光范「手技疗法指导における动作指示の违いが指圧动作に及ぼす影响」
田中瑠彗,东冈秀树,松下光范「手技疗法指导における动作指示の违いが指圧动作に及ぼす影响」田中瑠彗,东冈秀树,松下光范「手技疗法指导における动作指示の违いが指圧动作に及ぼす影响」
田中瑠彗,东冈秀树,松下光范「手技疗法指导における动作指示の违いが指圧动作に及ぼす影响」
Matsushita Laboratory
?
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
Matsushita Laboratory
?
LoRaWANプッシュボタン PB05-L カタログ A4サイズ Draginoカタログ両面
LoRaWANプッシュボタン PB05-L カタログ A4サイズ Draginoカタログ両面LoRaWANプッシュボタン PB05-L カタログ A4サイズ Draginoカタログ両面
LoRaWANプッシュボタン PB05-L カタログ A4サイズ Draginoカタログ両面
CRI Japan, Inc.
?
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
Industrial Technology Research Institute (ITRI)(工業技術研究院, 工研院)
?
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
NTT DATA Technology & Innovation
?
顿贰滨惭2025冲厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援.辫诲蹿
顿贰滨惭2025冲厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援.辫诲蹿顿贰滨惭2025冲厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援.辫诲蹿
顿贰滨惭2025冲厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援.辫诲蹿
Matsushita Laboratory
?
自宅でも出来る!!VCF構築-概要編-JapanVMUG Spring Meeting with NEC
自宅でも出来る!!VCF構築-概要編-JapanVMUG Spring Meeting with NEC自宅でも出来る!!VCF構築-概要編-JapanVMUG Spring Meeting with NEC
自宅でも出来る!!VCF構築-概要編-JapanVMUG Spring Meeting with NEC
shomayama0221
?
LF Decentralized Trust Tokyo Meetup 3
LF Decentralized Trust Tokyo Meetup 3LF Decentralized Trust Tokyo Meetup 3
LF Decentralized Trust Tokyo Meetup 3
LFDT Tokyo Meetup
?

ガイデットフィルタとその周辺