相関のある多変量データで距離を測る場合、我々が通常「距離」と呼ぶユークリッド距離よりも、マハラノビス距離の方が都合がよい。多変量データを変数ごとに標準化してユークリッド距離をとる場合は標準化により変数間の関係性が変わる上に相関関係は考慮されないが、マハラノビス距離を使えば変数間の相関関係も考慮した多変量標準化尺度として使用できる。Rでのデモつき。
このメモでは、説明のために、比較的きれいなデータを用いて、距離の大きさで便宜上外れ値を判定してはいるが、ロバスト性のない平均値ベクトルや共分散行列から計算されるマハラノビス距離はやはり全くロバスト性をもたないため、外れ値検出の目的で使用してはいけない。逆に言えば、マハラノビス距離を用いて外れ値検出を行うためには、平均値ベクトルと共分散行列の代わりに、ロバスト推計した位置と尺度指標を用いれば良い。