5. O-net
8.1.9
2
an cos(n )
an
n
(n,an)
1, 1 , 2,1 , 3, 1 , 4,1 ,..., n,cos(n ) ,...
n
an
-1
8.1.7
1
liman
n
1
1
n
8.1.9
22n 1
cos n
8.1.4
an
(convergent sequence)
L
0
liman L
n
N
an a
n N
(divergentsequence)
8.1.5
an
(divergeto )
liman
N
M 0
n
n M
an M
an
(divergeto
)
liman
M 0
an
N
f(x)
x
limf(n) limf(x)
n
x
8.1.7
8
n M
M
L
cos n
n
8.1.9
x
n
1
1
n
2 2n 1
169
6. O-net
8.1.1
an
2
bn
1. limk an kliman
n
n
2. lim an bn liman limbn
n
n
3. lim an bn liman limbn
n
n
4. lim
n
n
n
liman
an
bn
n
limbn 0
n
limbn
n
3 9 12
,2, , ,...
2 4 5
3 9 12
,2, , ,...
2 4 5
3n
3
lim
lim
n
n
1
n 1
1
n
3
8.1.10
a
n
3n
n 1
3
3
1 0
a,ar,ar2,...,arn,...
8.1.2
1.
r 1
2.
r 1
3.
r 1
4.
r
0
(
)
1
8.1.11
1 n2
1.
n 5
12 3 4
3. , , , ,...
2345
5 8 11 14
5. , , , ,...
23 4 5
7.
2n
1
n
1 n2
1.
a
n
8
lnn
n
11 1 1
4. 1, , , , ,...
2 4 8 16
52 74
9 8 11 16
6.
,
,
,
,...
1
2
3
4
3n 2
8.
n 3
1
1
1 n2
n2
lima lim
lim
15
2.
n 5
n
n
n
n 5
n
n n2
170
7. O-net
2.
a
n
lnn
n
2
lima
n
lim
n
n
lnn
n
1
lnn
1
0
lim
lim n
n
n
n
1
n
12 3 4
, , , ,...
2345
n
1 1
lima n lim lim
1
n
n
n 1 n 1 1 1 0
n
1
lim
0
n
3.
an
11 1 1
1, , , , ,...
2 4 8 16
4.
r
n
a
n
2
1
1
2 2
0
1
3n 1
n 1
a
n
52 74
,
,
1
2
lima n
n
9 8 11 16
,
,...
3
4
(4n 2 6n)
lim( 1)n lim
n
n
n
an ( 1)n
an
2n
1
1lim1ln(2n)
n
n
n
limn
0
n
n
n
n
liman lim 2n
n
(4n 2 6n)
lim( 1) n
1
7.
n 1
1
3 0
3n 1
3
lim
lim n
3
n
n
1 1 0
n 1
1
n
3
lima n
6.
n 1
1
5 8 11 14
, , , ,...
23 4 5
5.
n
n
1
lim 2n
e
en
e0 1
1
n
1
8.
8
a
n
3n 2
n 3
lima
n
n
lim
n
3n 2
n 3
lim
3 n
n
n
1
2
3
n
171
8. O-net
2
8.1
1.
1
a7,a11,a17
3
3
2.
9
3.
500
u1 a,
800
n
u2 a b,
2
un 2un 1 un
2
2
n
u au2n 1
4.
1
5.
3
2
8
n
5
729
8
1,024
20
6.
5
1, 3
2
4
256
5
(
5
8.
1,000
4
a1,a2,a3,a4
a2 a3 6
9.
a, b, c
a b c
10. x, y, z
a3 a4
11.
a1
5
12
n
27
a,b 3,c 2
12
xyz
an
)
1
2, 6, 18, …
7.
273
an 1
1, 4, 11
1
1
an
2
5
an
12.
2
1)
n
2n 1
5)
9)
3n
2)
2n 1
n2 1
n2 1
1)n
2
6) ( 1) n
1
10)
n
n
en
n
3)
3n 1
n2 1
n2 1
7) ( 1) n
11)
1
ln
4)
n2 1
n3 1
8) 1 ( 1) n
12)
n
3n 1
n2
n
2n
n
n
13)
14)
sin
cos
2n
15)
16)
4n
2
n
17)
cos
n
18) n 2e
n
19)
n 2 3n n
20)
n 2 n
2
3 ( 1)n
21) 2
22)
n
8
ln(n2)
2
n
23)
2n
tan 1
2n 1
24)
1 2 3
n n n
...
n
n
172
9. O-net
2.
2
(Series)
8.2.1
n
a1,a2,a3,...,an
a1 a2 a3 ... an
n
ai
Sn
i 1
a1,a2,a3,...,an,...
a1 a2 a3 ... an ...
ai
i 1
2.1
(capital sigma)
n
1.
c
c cn
i 1
n
2.
n
cai c
ai
i 1
n
3.
c
i 1
n
ai bi
ai
i 1
n
bi
i 1
i 1
n
4.
i 1 2 3 ... n
n(n 1)
2
i 1
n
i 2 12 2 2 32 ... n 2
5.
i 1
n
6.
i
3
3
3
3
1 2 3 ... n
i 1
8.2.1
(n 1)(2n 1)
6
2
n(n 1)
3
2
1 3 3 5 5 7 ... 21 23
11
11
=
1 3 3 5 5 7 ... 21 23
(2i 1)(2i 1)
(4i 2 1)
=
i 1
i 1
11
11
i2
=4
i 1
i 1
8.2.2
1= 4
(11 1)(22 1)
1(11)
6
= 2013
1 2 2 3 3 4 ... 19 20 2
2
2
2
19
1 2 2 2 32 3 4 2 ... 19 20 2
19
i(i 1) 2
=
i 1
19
=
i 1
=
i 1
19
19
i3 2
(i 3 2i 2 i)
i2
i 1
i
i 1
2
19(19 1)
(2 1)(2 2 1) 19(19 1)
=
2
2
6
2
= 36,100 + 4,940 + 190
= 41,230
8
173
10. O-net
2
2.2
a1,a2,a3,...,an
8.2.2
d
S
n
Sn
8.2.3
n
a a
2 1 n
n
2a1 n 1 d
2
1 6 11 16 ... 101
a1 1, d 5
1 6 11 16 ... 101
an 101
an a1 (n 1)d
101 = 1 + (n – 1)(5)
n = 21
21
n
n
a a
2 1 n
Sn
21
1 101
2
1 6 11 16 ... 101 =
= 1071
2.3
a1,a2,a3,...,an
8.2.3
r 1
a1 anr
,
1 r
a(1 rn)
Sn 1 ,
1 r
S
n
8.2.4
r 1
r 1
2 4 8 16 ... 2048
a1 2,
2 4 8 16 ... 2048
an 2048
r 2
an arn1 1
2048 =(2)(2) n
1
2048= 2 n
n = 11
11
n
2 4 8 16 ... 2048
S
n
=
a1 anr
;
1 r
r 1
2 (2048)(2)
= 4094
1 2
8.2 -
8
174
11. O-net
2
3.
3.1
a1,a2,a3,...
8.3.1
S n a1 a2 a3 ... an
(partial sum) n
8.3.1
S1,S2,S3,...
Sn
limS n S
n
(convergent series)
S
S
Sn
limSn
n
(divergentseries)
1.
:
an a1 (n 1)d
a1 d 0
2.
:
ar1n 1
an
-
r 1
S
r 1
an
1.
liman 0
liman 0
n
n 1
a1
1 r
n
an
n 1
2.
liman 0
an
n
n 1
an
3.
n 1
bn
n 1
an
4.
bn
n 1
n 1
a bn
n
n 1
n 1
an
5.
8
an bn
n 1
bn
n 1
an bn
n 1
175
12. O-net
2
8.3.1
1
1.
n 1n
4.
3
n
2.
n 1n 1
n 1
5
2 2 2 2
...
1 3 9 27
1
Sn
n
1
n 1n
1.
n
2.
n 1
6. 1 5 25 125 ...
5.
4
n 1
3.
S
n 1n 1
n
n 1
2
3
limS n
n
n
n 1
1
lim 0
n
0
n
limS
n
n
lim
n
n
1
lim 1
n 1 n 1 1
n
1
2
3.
2
3
a 1
31
n 1
r
n 1
2
1
3
S
a1 1 1
3
21
1 r
1
3 3
3
5
3
4.
n 1
r
5.
n 1
a1 3
4
5 5
1
4 4
2 2 2 2
...
1 3 9 27
2
n 1
a1 2
S
r
n 1
1
3
1 1
1
3 3
a1 2 2
3
12
1 r
1
3 3
3
6.
5n 1
1 5 25 125 ...
n 1
a1 1
8
r 5 5 1
176
13. O-net
3.2
2
(P-series)
8.3.2
1 1
1 1
...
p
p
1 2p 3p
n 1 n
(P-series)
(harmonic series)
p 1
1 1
1
...
...
2
3
4
n
1 1 1
1
1
...
...
2 3 4
n
1 1 1
1
12 2 2 ...
...
2 3 4
n2
1 2 2 32 4 2 ... n 2 ...
1
p
1
p
1
2
p 1
p 2
p
2
1
8.3.2
n 1
p
n
1
p
n 1n
1
p
n 1 n
p 1
p 1
8.3.2
1 1
...
2
3
4
1 1 1
2. 12 2 2 ...
2 3 4
1 1 1
3. 1
...
22 33 44
1. 1
1
1.
2.
3.
8
1 1 1
...
2
3
4
1
1
1 1 1
2 32 4 2
2
1
...
1 1 1
...
22 33 44
p
1
1
2
p 2 1
p
3
1
2
177
14. 2
3.3
(ComparisonTest)
an
8.3.3
n 1
an 0
bn
bn 0
n 1
n 1,2, 3,...
bn
1.
an
n
an bn
n 1
n 1
bn
2.
an bn
n
a
n
n 1
n 1
8.3.3
1.
1
n 1
2.
n 1
5
2
1 1 1 1
4.
...
13 25 37 49
1 1 1
6. 1
...
2! 3! 4!
n 1
n3
n 1
n
5.
n 1lnn
1 1
3.
1.
sin2n
2
n 1n 1
n 1
1
n 2,3,...
n
p
n
1
n 1
n 1
1 sinn 1
1
2
n 1
2.
n 1,2, 3,...
0 sin2n 1
n2 1
1
1
2
n 1 n2
(1)
1
n
2
n 1
sin n2 1
…(1)
n2 1 n 2 1
…(2)
n 1,2, 3,...
sin2n
n2 1
(2)
0
1
1
n 1 n2
2
n 1, 2,3,...
p 2
sin2n
2
n 1n 1
8
178
15. 2
5
3.
5
n2 1 n3
3
3
n
n
1
n
n 1
1
3
n
1
1 1
3
n n
n
n 1, 2,3,...
p
1
2
5
n 1
4.
5.
6.
8
n2 1
n3
1 1 1 1
...
13 25 37 49
1
1
1 1
2
2
n(2n 1) 2n n 2 n
1
2
n 1n
1 1 1 1
...
13 25 37 49
lnn n
n 1, 2,3,...
1 1
lnn n
n n 1
lnn n n
1
n 1n
n
n 1lnn
1 1 1
1
...
2! 3! 4!
1
1
1
1
n! 1 2 3 ... n 1 2 2 ... 2 2 n 1
1
n 1
n 12
1 1 1
1
...
2! 3! 4!
1
n 1 n(2n 1)
n 1,2, 3,...
p 2
p 1
1
n 1 n!
n 1, 2,3,...
r
1
2
179
16. 2
3.4
(LimitcomparisonTest)
an
8.3.4
an 0
bn
n 1
bn 0
n 1
n 1,2, 3,...
a
1. lim n L 0
n
bn
a
2. lim n 0
n
bn
a
3. lim n
n
bn
bn
an
n 1
n 1
bn
an
n 1
n 1
8.3.4
1.
5.
sin
n 1
1.
a
2n 2 1
2n3 5
n
8
2.
5
2.
n 2 4n 5
3
n 2
n 1 n
n
3
4. n
n 11 e
1
6. 2
n 1 n lnn
2n 3 5
5
n 1 4n 1
en
3. 2n
n 11 e
bn
1
n2
2n3 5
a
2n 5 5n 21
n5
lim n lim 4 1 lim
0
n
n
1
bn n
2
4n5 1
n2
1
p 2 1
2
n 1n
2n 3 5
5
n 1 4n 1
n 2 4n 5
1
an
bn
3
n n 2
n
2
n 4n 5
3
2
n
n a 3 2 lim n 4n 5n
lim n
1 0
lim
n
1
n
n3 n 2
bn n
n
1
n 1n
n 2 4n 5
3
n 2
n 1 n
4n 1
180
17. 2
3.
an
en
1 e 2n
lim
n
en
2n
lim 1 e
1
an
b
n
1
e
bn
lim
n
n
n
e
e 2n
1 e2
1 0
n
n
1
n
n 1e
r
n
an
n
5.
3
1 en
b
n
3n
en
3n
n
n
a
e
lim n lim 1 ne lim
1 n0
n
n
1 e
bn n 3
n
e
n
3
n
1e
3n
n
n 11 e
an sin
n
bn
2n 2 1
bn
3
1
e
1 0
n
2n 2 1
2
1
1
2
n 1
r
2n 2 1
sin
a 22 1
lim
n
n
lim
1
e
en
2n
11 e
n
4.
1
2n 1
2
n 1
n
n 1
n
(p
2 1)
2
n 1
2n 1
sin
2n2 1
1
1
bn 2
an
2
n
n lnn
1
2
a
1
lim n lim n lnn lim
n
n
n
1
bn
2
n
1
2
n 1 n
1
2
n 1 n lnn
n 1
6.
8
0
lnn
p 2 1
181
18. 2
3.5
(IntegralTest)
an 0
an
8.3.5
n
f
n 1
a,
n
f(n) an
1.
∫ f(x)dx
an
n 1
2.
x a
f(x) 0
a
∫ f(x)dx
an
n 1
a
8.3.5
1.
n
1
2
1n
1
2.
n
n 1
1
an 2
n
1.
∫
1
x2
f(x)
b
∫
1
f(x)dx
lim
lim ( )dx
b
x2
1
b
1
∫ f(x)dx
f(x)
∫
∫
1
sech2
n2
b
1
b
1
n
b
∫
1
1
lim ( sech2 )dx
2
x
x
1
b
∫ f(x)dx
8
lim tanh
b
1
1
f(x)
1
1
b
x lim 2
n 1
∫ f(x)dx
1
x
b
1
n
1
1
1
b
1
∫
a
b
n
1
f(x)dx lim ( )dx lim 2
b
b
x1
1
1
f(x)dx
3.
lim
2
n 1
1
n
an
b
1
x
1
1
2.
1
1
sech2
2
n
n 1n
3.
n
sech2
x2
1
x
∫
1 1
lim (sech2 )d( )
b
x x
1
b
1
x1
b 2
lim tanh
b
b
tanh1
tanh1
1
1
sech2
2
n
n 1n
182
19. 2
3.6
(RatioTest)
an 0
an
8.3.6
lim
n
n 1
1.
an 1
an
an
1
n 1
2.
an
1
n 1
3.
1
8.3.6
n
(n 1) 2
(n 3)!
2.
n
n!
n 1 3 n!
n 1
3 5 7
1 13 135 1357
...
3. 1
4.
...
2
3
5 5 5
5 56 567 5678
3 35 357 3579
5.
...
2 2 7 2 7 12 2 7 12 17
(n 1)
n
(n 1) 2 n
(n 1 1) 2
(n 2) 2 2 (n 1)!
an
an 1
n!
(n 1) n!
1.
1.
an 1 (n 2) 2 2 n! n 2n 4
an
(n 1) n! (n 1) 2n
2
an 1
2n 4
lim
lim n n
n
n
n 2 2n 1 n
an
lim
2.
(n 1) 2
n!
n 1
(n 3)!
a
n
3n n!
n
(n 1 3)! (n 4)! (n 4)(n 3)!
3(n 1) (n 1)! 3 3n (n 1)! 3 3n (n 1) n!
an 1
(n 4)(n 3)!
an 1
an
3 3n (n 1)n!
an 1
n
an
lim
2
n 2n 1
2 4
0 0
0 1
2 1
1 0 0
1
2
n n
lim
n
n 4
3n 3
3n n!
(n 3)!
n 4
n 4
3(n 1) 3n 3
1
n
lim
4
1 0 1
1
n
3 3 0 3
3
n
(n 3)!
n
n 1 3 n!
8
183
20. 2
3.
4.
5.
a
2n 1 2n 1
2(n 1) 1 2n 2 1 2n 1
an1
(n 1) 1
n
1
n 1 1
5
5 5
5
5
5
n
1
an 1 2n 1 5
5
1 2n 1
an
2n 1 5 2n 1
5n
1
an 1 1
2n 1 1
1 22 0 1
lim
lim
lim n
1
n
an
5n 2n 1 5n 2 1 5 2 0 5
n
3 5 7
...
1
5 52 5 3
1 3 5 ... (2n 1)
1 3 5 ... (2n 1)(2n 1)
an
an 1
5 6 7 ... (n 4)
5 6 7 ... (n 4)(n 5)
(n 4)
(2n 1)(2n 1)
2n 1
an 1
n 5
an
(n 4)(n 5)
(2n 1)
n
n 1
n
1
2
a
2n 1
2 0
lim n 1 lim
lim n
2 1
n
n
n
5 1 0
n 5
an
1
n
1 13 135 1357
...
5 56 567 5678
3 5 7 ... (2n 1)(2n 3)
3 5 7 ... (2n 1)
a
an 1
n
2 7 12 ... (5n 3)
2 7 12 ... (5n 3)(5n 2)
(5n 3)
(2n 1)(2n 3)
2n 3
an 1
5n 3
an
(2n 1)
(5n 3)(5n 3)
3
2
an 1
2n 3
2 0 2
lim
lim
lim n
1
n
n
n
3 5 0 5
5n 3
an
5
n
3 35 357 3579
...
2 2 7 2 7 12 2 7 12 17
8
184
21. 2
n(nth-RootTest)
3.7
limn an R
an 0
an
8.3.7
n
n 1
1.
an
R 1
n 1
2.
an
R 1
n 1
3.
R 1
8.3.7
2
n
n
6n 3
1.
1
2.
n 1
1.
n
R limn a
n
n
lim
n
2
0 1
n
n
lim
n
6n 3
n 1 3n 5
an
an
22
n
n
n
n
R limnna
3.
ln(n 2)
n
2
n
6n 3
3n 5
a
n
n
n 1
n
n
2
n
n 1
5
3n
n 1
an
2.
3.
n
n
an
n
6n 3
3n 5
n
1
ln(n 2)
n
n
R limn a
n
6n 3
3n 5
6n 3 6
2 1
3n 5 3
1
ln(n 2)
n
n
lim
n
an
n
1
ln(n 2)
n
1
0 1
ln(n 2)
1
n
n 1
8
ln(n 2)
185
22. 2
3.8
(AlternatingSeriesTest)
8.3.3
(AlternatingSeries)
( 1)n 1a
a a
n
1
a a
2
3
...
a 0,
i 1,2,3,...
i
4
n 1
( 1)n 1a n a 1 a
8.3.8
a a4
3
2
...
n
a 0
n 1
2
n
1. an 1 an
2. liman 0
n
8.3.8
1.
1.
1 2 3 4
...
3 7 11 15
n
an
4n 1
( 1)n
2.
1
n 1
n 2
n2 4
n 1
n
an
n
4n 3 4n 1
n
1 1 1
(2) lima n lim
lim
0
n
n
1 4 0 4
4n 1 n
4
n
1 2 3 4
...
3 7 11 15
n 2
2
n 4
n 3
n 2
(1) an 1
n
an
2
n 2n 5
n2 4
1 2
2
n 2
0 0
lim n n
0
(2) liman lim
4
n
4
1 0
(1) an 1
2.
an
n
( 1)n 1
n 1
8
n
2
n
1
n2
n 2
n2 4
186
23. 2
3.9
(AbsolutelyConvergent&ConditionallyConvergent)
an
8.3.4
an
n 1
n 1
an
an
n 1
n 1
an
n 1
8.3.9
1
1.
1
5
n2 n
1
n 1
n 1
1.
( 1) n
2.
( 1)n 1
a
(2n 1)
1
(2n 1)3
n
3
1
3
(1)a 1
n
a
n
1
n 1 (2n 1)
n 1
n
(2n 3)
(2n 1)
1
lim
0
n
(2n 1)3
(2)liman
an
3
1
an
3
1
3
(2n 3)
1
3
(2n)
1
8n
(2n 1)
n
3
1
3
1(2n)
n
3
n 1
n 1
p 3
an
n 1
( 1)n 1
an
n 1
n 1
2.
an
1
5
(1)a
n2 n
(2n 3)3
5
n 1
n 2 3n 2
5
lim
0
n
n2 n
(2)liman
n
an
n 1
5
a
5
n n
n 1
5
an
2
n 1
5
5
5
n2 n
n2
5
n 1n
n
n
n2 n
n 1
2
n n
n
p 1
an
n 1
an
n 1
8
5
( 1)n 1
2
n 1
n n
187
24. 2
1
n
liman 0
n
a1
1 r
r 1
an
2
n 1
r 1
3
an
p 1
n 1
p 1
(
an
4
(
n 1
,
,
/
,
an )
n 1
an )
n
n 1
5
an 1 an
an
n 1
Sn
8
an
0
an 0
188
25. 2
8.3
1.
S1,S2,S3
S4
n 1
5
1)
5
n 1
2)
n 1
n 1
n
4)
n 1
5
3)
n 1
2
n 1
n 1
4
n 1
1
5)
2
6)
(n 1)(n 2)
n 1
2
3
n 1
2.
1
2)
1)
5
4
n 1
3
n 1
e
2
5)
4
5
n 1
n 1
7
6n 1
8)
n 1
1
6)
n 1
3
3 n 8n 1
3
2
n 1
n 1
1
13)
n 1
(n 2)(n 3)
2
4
n 1
n 17
n
n
12)
n 4
n 1 n 3
1 1
15)
1
2 3n
1
1
14)
en
9)
( 1)n
11)
2n
n 1
2n
10)
3
n 1
n
3
n 1
( 1) n 1
7)
n 2
2
3)
n
n 1
4)
n 1
3
3n 2
9n 2
2 n 2n 1
n 1
n 1
2
2
n
16)
n 1
19)
17)
n 2
20)
sin(n )
n 1
22)
n
n 12n 1
18)
n 1
21)
cos(n )
n 1
tan(n )
n 1
1
ln
23)
ln(n)
n n 1
2n 2 1
en
ln
24)
n 1
n
n 1
en
25)
28)
n
31)
n
en
26)
n 1
n 1
1
1
27)
n
5
30)
n 1 4n
10
33)
n 1 3n(n 1)
n 1
n 1
1
1n 4
1
110n
e
n
n
1
n 1 2n 10
1
32)
n 1 2n(n 1)
29)
3.
1)
ne
n
2)
n 1
5)
8
1
6)
n
2
n 1n 1
1
sin
3)
7)
1
n 1 nlnn
n4
5
1
4)
2n 1
n 1
2
8)
n
3
3
189
26. 2
n 1
9)
8
lnn
n 1 n
2n 1
3
n 1n
10)
n
n 1 (n
n
2
n 1n 9
n
1n
10
1)3
190
27. 2
4.
(
)
1
n
1n 4
1)
n
2)
1
n2
n 1e
nn 1
9)
3
n 1n 1
1
2
n 1n 1
1
3
2
n 1n n
3 sinn
10)
3n
n 1
5)
n
11)
14)
1 3
15)
4
n 1
n 1
n 1
n
n 1
n3
n
n 2n 1
2
12)
n 11 3
8)
n5 1
n
sin2n
16)
1 n
n 1
n 1
nn
)
1
2)
n 1
n 1
4)
1
(
1)
1 5
n
1 4
n
n 1
n2 1
n
n 1
5.
1
n 1 n(n 2)
7)
6)
1 2n
13)
3)
n
n2 1
4
1n 1
3)
4n3 3n2
4
2
n 1n n 1
2
n 1
n2
4)
5)
n
n 1
2n 7n
3(3n
4n)
n
6)
2
n 1
2
n 1
5n
2n 5
6.
n
n
1)
5)
9)
3n 1
n 1 2n
100 n
n 1 n!
2)
(1 e
n 1
n n
3)
)
2
6)
n
n
n
15
n
7)
n
5n n 1
1n(3 )
n!
n
n 1e
10)
n
n
n
3
1 n
n 50e
n
15
11)
n 1
2
n
n 1
4n
2
1 n
n
2
7n
1 n!
8)
n
n
2
3
en
n 1 n
4)
4
12)
n
1
2 nlnn
3
13)
n
n!
3
1 n
n
4
14)
n
n 1
7n
15)
16)
(n!)2
n 1 (2n)!
20)
(n 1)!
n
n 1 4!n!4
1
n
3n 2
lnn
18)
n
n 1 2n 1
n 1 e
1 21 2 3 1 2 3 4
1
...
13 135 1357
17)
21)
19)
2! 3! 4! 5!
22)
...
1 1 4 1 4 7 1 4 7 10
7.
( 1)n
1)
n 1
2
n 3
2)
( 1) n 1
n
n 1
n 1
1
en
( 1)n
3)
n 1
( 1) n 1
4)
n 1
1
n
2
n
5)
n
9)
n
8
( 1)
6)
n 3
1
2
nn
( 1) 2
10)
n 1
1
1
( 1)n 1 8)
5n 1
nlnn
n 1
n 1
n
n
( 1) n n
( 1) n
11)
12)
2
lnn
n 1
n 1
( 1) n 1
n
( 1)n
7)
n 1
n
2
n 1
lnn n 1
( 1)
n 1
n
191
28. 2
13)
n 1
( 1)n 1
3n 1
n 1
( 1)
n 1
cosn
14)
n 1
e
n
( 16)sin
1) n
15)
3
1
4
( 1)n
2
lnn
n
( 1)n
20)
5
2
n 1
n
n
19)
n
n 2
( 1) cos
n 1
n
3
18)
n
n
n
3
17)
n
e
n 1
n 1
8.
1)
( 1)n 1
1
nn
n
4) ( 1)n 1 2
n 1
n 1
2)
n 1
2n
3n 4
n 1
1
10)
( 1)n
(2n 1)!
n 1
7)
( 1)n
( 1)nen
13)
3
( 1) n
3)
n
8)
1
1
n 1
( 1)n
n 1
(2n)!
1
2
(n 1)3
( 1)ne
14)
n
lnn
n
( 1) n
17)
n 1
20)
n 1
2n
n 1
2n
n 1 3n 4
( 3)n
9)
3
n 1 n
6)
( 1) n
11)
( 1)n
n 1
n
5)
3
n 1n 1
n 1
n
lnn
n 1
1
cos n
6
19)
n2
n 1
8
1
n 1
n 1
16)
( 1)n 1
( 1) n
12)
1
3
n 1
(n 1)2
1
15)
( 1)n 1
n n!
n 1
sin2n
18)
3
n
n 1
cosn
n
192
29. 2
4.
(Power Series)
8.4.1
x 0
ax n a0
n
n
ax ax 2 ... axn ...
2
1
n 0
x h
a(x h) n a
n
0
1
a(x h) a(x h) 2 ... a(x nh)n ...
2
n 0
h
(Center)
a0,a1,a2,...,an,...
x 0
nx n
an n
n 0
n 0
xn
n 1 n
x 2n
n 0(2n)!
1
n
an
n 1
1
(2n)!
an
n 0
x h
(x 2) n
an 1
n 0
h 2
n 1
h
n 0
(x 2)n
n!
n 1
an
1
n
2
8.4.2
(Interval of Converge)
(a,b),[a,b], (a,b]
[a,b)
8.4.3
R
x
x a R
a R
R
(Radius of Converge)
x
(R
)
x a
0
8
193
30. 2
ax n a
n
8.4.1
0
2
ax ax2 ...ax n n ...
1
n 0
x c (c 0)
x c
ax n a
n
8.4.2
0
2
ax ax2 ...ax n n ...
1
n 0
x d
x d
1
n
x a R
a R x a R
2
x2 x3 x4
x
...
2 3 4
8.4.1
an
an 1
xn
n
xn 1
n 1
x xn
n 1
an 1
n
an
lim
x 1
x 1
lim
n
xx n
n
n 1 xn
1
x 1
(
n
x
x
1
1
n
1 x 1
x
1
n
x
lim
( 1)
1
1
n
n 1
n
1
1 1 1
1
2 3
n 1n
p 1)
1 1
...
2 3 4
...
4
1 x 1
8
194
31. 2
x3 x5 x7
x
...
3 5 7
8.4.2
x 2n 1
x 1 x 2n
2n 1 2n 1
2n 1
x
x x 2n
an 1
2n 1 2n 1
a
x x 2n2n 1
lim n 1
lim
n
n
an
2n 1 x 1 x 2n
an
x2 1
n
2n 1 2
x
2n 1
x2
1 x 1
x2 1
x
limx 2
x
1
( 2n 1
1)
1 1 1
1
...
3 5 7
n 1 2n 1
1 2n 1
1 1 1
1
...
3 5 7
n 12n 1
p 1)
1
x 1
(
1 x 1
8.4.3
n
n n
( 1) n n 2)
3 (x
n
1
n
n
( 1) 3 (x 2)
n
n 1 n 1
( 1) 3 (x 2) n 1
( 1) n ( 1) n 1 1
an 1
n 1
1
a
3 n(x 2) nn1
n
lim n 1
lim
3x 2
n 3lim(x 2) n
n
n
n
an
n 1
3 (x 2)
n 1
5
7
3x 2 1
x
3
3
5
7
3x 2 1
x , x
3
3
n
1
( 1) n3n
5
( 1)
1 1 2n
1
3
x
1
...
n
3
n
2 3 4
n 1
n 1
an
n
x
7
3
n 1
5
8
1
( 1) n3n
( 1)(1)
3
n
x
3
n
1 1n 1
...
n
n 1
1
2 3 4
7
3
195
32. 2
8.4
1.
xn
2.
n 0 n 4
x nn 2
n
n
( 1) n
3.
1
n
x
n
n 1
n
x lnn
n3
n 2
( 1) xn n
7.
n!
n 0
xn
9. 10.
n 1n(n 1)
n n
3x
11.
n 0 n!
5.
x 2n 1 n
( 1)
n 0
n
12.
n
nx n
13.
2
nx
4.
2
n 2n 1
n
x
6.
n 0n 1
n n
5x
8.
2
n 1 n
n 0
14.
n
n 0
n n
15.
n
17.
n
19.
n
( 1) x
n
1 n 2
xn
18.
2lnn
xn
20. n
n3
1
16.
n
x
2
01 n
n
x
0 n!
n n
3x
0(n 1)
23.
25.
27.
n 0
n
29.
(x 1)
( 1) n 1
n
n 1
(x 1) 2n
( 1)n
n2 4
n 1
n 1
(x 4) n
n
n 0 10
n n2
(x 4)
3n
n 02
n
( 1)nx n 1
2n 1
0
n
22.
n 0
1
n
n 0
8
(x 5) n
(x 1) 2n
(2n 1)!
3 2n
(x 2)n
n 0n 1
lnn
(x e) n
28.
n
n 1e
26.
30.
n
n 1
3
4
n
24.
n
(x 6)
2
n!x n
n
21.
(2n 1)!
(2x 1)n
3
n
1
2
196
33. 2
5.
(Taylor and Maclaurin Series)
Brook Taylor (1685-1731)
8.5.1
f
(n)(n)
n 0
8.5.2
f (0) n
x
n!
f (0) f (0) 2
f (0) n
x
x ...
x ...
1!
2!
n!
(Maclaurin Series)
f(0)
f
x a
(n)(n)
n
ColinMaclaurin(1698-1746)
x 0
f (a)
(x a)n
n!
0
f(a)
f (a)
f (a)
f (a)
(x a)
(x a)2 ...
(x a)n ...
1!
2!
n!
(Taylor Series)
f(x) e
8.5.1
2x
(n)
f (0) f (0) 2
f (0) n
f(0)
x
x ...
x ...
1!
2!
n!
f(x) e x
f(0) e0 1
f (x) e x
f (0) e0 1
f (x) e x
f (0) e0 1
f (n)(x) e x
f(n)(0) e0 1
1 x
xn
an
n!
an
an 1
n
an
lim
1
lim
n
xn
n!
x x2 3 x
...
2! 3!
n
n 0
n!
xn 1
(n 1)!
x n 1n!
(n 1)! x n
limx
n
1
n 1
0 1
x
8
197
34. 2
8.5.2
f(x) sinx
(n)
f (0) f (0) 2
f (0) n
f(0)
x
x ...
x ...
1!
2!
n!
f(0) sin0 0
f(x) sinx
f (x) cos
f (0) cos0 1
f (x)
sinx
f (0)
sin0 0
f (x)
cosx
f (0)
f (2n)(x) ( 1)nsinx
cos0
1
f (2n)(0) ( 1)nsin0 0
f (2n 1)(x) ( 1) ncosx
f (2n 1)(0) ( 1)ncos0 ( 1) n
( 1)nx 2n
x3 x5 x 7
x
... ...
3! 5! 7!
(2n 1)!
1
x
8.5.3
f(x) e2
f(a)
x
f(2) e2 e
1 22 1
f (2)
e e
2
2
2
1 21
f (2)
e e
4
4
f(x) e
f (x)
(n)
f (a)
f (a)
f (a)
(x a)
(x a)2 ...
(x a)n ...
1!
2!
n!
2
2
x
2
1
e
2
f (x)
a 2
x
1
e2
4
f (n)(x)
1
n
x
1
f(n)(2)
e2
2
n
e
2
1
1
1
e(x 2) e(x 2) 2 ...
e(x 2) n ...
2
4 2!
2n n!
a 2
f(x) lnx
e
8.5.4
(n)
f(x) ln x
1
f (x)
x
1
f (x)
x2
f (a)
f (a)
f (a)
f(a)
(x a)
(x a)2 ...
(x a)n ...
1!
2!
n!
f(2) ln2
1
f (2)
2
1
f (2)
4
f (n)(x)
n 1
( 1)
xn
f (n)(2)
ln2
8
( 1)
n 1
2n
1
(x 2)
2
1
(x 2)2 ...
4 2!
( 1)
n 1
(x n2)n ...
2 n!
198
35. 2
8.5
1.
1) f(x) e
x
2) f(x) sin3x
4) f(x) coshx
3) f(x) cos( x)
5) f(x)
7) f(x)
9) f(x)
11) f(x)
13) f(x)
2.
x2
1 cosx
2
ln(3 2x)
1 cos2x
sin2 x
2
3
8 x
1
coshx
1 x
x a
1) f(x) ln x,
3) f(x) sinx,
a
4
5) f(x) e,
a 1
2
7) f(x) 4x 2x 1,
a 1
a e
9) f (x) ln x,
x
2x
6) f(x) e
8) f(x) exsinx
10) f(x) 2 x
12) f(x) cosxln(1 x)
14) f(x) xsec x 2 sinx
2) f(x)
a 1
8
ex e
2
1
,
4) f(x) x,
x
a 2
a 4
6) f(x) tan 1 x,a 1
8) f(x) lnx,
a 2
10) f (x) tanx,
a
199
36. 2
8
1.
n
2
1
3
n
ln ln ... ln ...
2
3
4
n 1
2 2 2
2
3) 2
...
... n 1
3 9 27
3
1) ln
1 1 1
1
... ( 1)n 1 ... n 1
2 4 8
2
5 5 5
5
4)
...
...
12 23 34
n(n 1)
2) 1
2.
1 1
1) 1
1
...
3 9
n
111( 1) n 1
... ...
2 4 8
3) 1
2
5)
...
3
n 1
2)
2
1
1
7
7
5
2n 1
4)
6
3
3
4 4 4 4
6)
1
3
7
n 1
n 1
3
1
...
7
3
n
...
7
...
3
n
...
n
3.
1
3
1n
1)
n
1
2)
n
n 1
2
3)
1
n
n3
4)
n 1
n 1
4
1
n3
5)
6)
n 1
4
n 1
1
7)
n5
1 1 1
9) 1
...
22 33 44
1
8)
3
n 1
n
n 1
10)
n
1
1 1 1
...
4 2 9 3 16 4
4.
1)
3)
lnn
n 1 n
1
n 1
5)
n n2 1
1
n 1 n lnn
1
2
n 1n 1
1
4)
2n 1
n 1
n
6)
2
n 1n 1
2)
5.
1)
2
n 1
2n 1
2)
2
n
n 13 1
n
1
3)
n
n 1
5)
9
n 1
8
3 5
n 1
2 1
n
2n
n 13
2
sinn
6)
n
n 1 2
4)
200
37. 2
6.
2n 3
n3
1)
n 1
2n3 3n2 4
4
2n 3 1
1 5n
2)
n
1
n 1 (n 1)(n 2)
3n 4
5)
n
n 1 n 2
3)
3n 2
2
n 1 2n 5
n 5
6)
n 1
n 1 n
4)
7.
n
1)
n 1
3)
5)
n
2
3
2)
n3
4)
n 1 n!
ne
n
n
(n 1)2n
2
3n
n!(2n 1)!
9)
n 1 (2n 3)!
n 1
8.
n
nn 1
2
n 1
7)
n
n 1 (2n 2)!
23n
6)
2n
n 13
n
n
8) 2 n
n 12
1 4 7 ... (3n 2)
10)
n 1 3 5 7 ... (2n 1)
n
n
n
n2 1
1)
2)
n 1
5
3n
n 1
n
1
n
3)
4)
n 1
lnn
5
(n!)
n 2
1 (n )
n
n
5)
n
n 1
n 1 (lnn)
6)
n
n
9.
1
n2
n 1
n 1
3) ( 1) n 1
n
n 1
1
5)
( 1) n 1
2n 1
n 1
( 1) n
1)
1
( 1) n
2)
n 1
1
nlnn
n 2
( 1)
4)
5n 2 2
n 1
n 1
6) ( 1)n 1
3n 1
n 1
n 1
10.
1)
( 1)n 1(0.1) n
2)
n 1
n 1
8
n 1
( 1)n 1
3)
( 1)n 1
n
n3 1
4)
1
n
n!
n
n 12
201
38. 2
5)
( 1)n
1
sinn
2
n
n 1
1
8)
( 1)n 1
lnn 3
n 1
( 1) n
6)
n 3
3 n
7) ( 1)n 1
5 n
n 1
n 1
n 1
1 nn
( 1) n 1
9)
2
n 1
n
11)
n 1
n
2
3
2
( 1)n
13)
n 1
15)
( 2)
10)
n
n 1 n 5
( 1)n 1(n10)
12)
n 1
tan 1n
( 1) n 1
14)
2
n 1
n 1
11
2n
n 1 n
( 1) n
16)
1
n 1
1
nlnn
(0.1)
n
n
11.
1)
(x 5)n
2)
n
n 0
3)
(2x) n
4)
n
n 0
n
5)
(x 2) n
n
0
n n
(x 1)
n
n 0
6)
n
( 1)n(x 2) n
0
n
3x
0 n!
12.
1) f(x) e x
2) f(x) cosx
m
3) f(x) (1 x)
5) f(x) coshx
7) f(x) esinx
4) f(x) sinhx
6) f(x) tanx
8) f(x) ln(cosx)
13.
1) f(x) x3
x 2
2) f(x) x 4 x 2 3
3) f(x) lnx
4) f(x) e
8
x
x 1
x 1
x 3
202