ݺߣ

ݺߣShare a Scribd company logo
óðîê-ïðåçåíòàöèÿ
Ãåîìåòðè÷åñêàÿ ïðîãðåññèÿ
øêîëà òàêàÿ-òî
Ïîñïåëîâà Ì. Ä.
Ìîñêâà 2015
Çàäà÷à î ç¼ðíàõ íà øàõìàòíîé äîñêå
Îïèñàíèå çàäà÷è â Âèêèïåäèè
1 2 22
23
24
25
26
27
28
29
210
211
212
213
214
215
. . .
256
257
258
259
260
261
262
263
Îáùåå ÷èñëî ç¼ðåí
S = 1 + 2 + 22
+ 23
+ . . . + 262
+ 263
Ãåîìåòðè÷åñêàÿ ïðîãðåññèÿ
Îïðåäåëåíèå
Ãåîìåòðè÷åñêîé ïðîãðåññèåé íàçûâàåòñÿ
ïîñëåäîâàòåëüíîñòü îòëè÷íûõ îò íóëÿ ÷èñåë,
êàæäûé ÷ëåí êîòîðîé, íà÷èíàÿ ñî âòîðîãî, ðàâåí
ïðåäûäóùåìó ÷ëåíó, óìíîæåííîìó íà îäíî è òî
æå ÷èñëî.
Ãåîìåòðè÷åñêàÿ ïðîãðåññèÿ
Ïîñëåäîâàòåëüíîñòü (bn)  ãåîìåòðè÷åñêàÿ ïðîãðåññèÿ,
åñëè äëÿ ëþáîãî n ∈ N âûïîëíÿåòñÿ
bn = 0
nn+1 = bn · q
ãäå q  íåêîòîðîå ÷èñëî
Çíàìåíàòåëü
Ïðè ëþáîì n ∈ N
bn+1
bn
= q
Îïðåäåëåíèå
×èñëî q íàçûâàåòñÿ çíàìåíàòåëåì
ãåîìåòðè÷åñêîé ïðîãðåññèè
Ïðèìåðû
1.
b1 = 6, q = 2
çàäàþò ïðîãðåññèþ
6, 12, 24, 48, 96, . . .
2.
b1 = 1, q = 0.1
çàäàþò ïðîãðåññèþ
1, 0.1, 0.01, 0.001, 0.0001, . . .
Ôîðìóëà n-ãî ýëåìåíòà
ãåîìåòðè÷åñêîé ïðîãðåññèè
bn = bn−1 · q
b2 = b1 · q
b3 = b2 · q = b1 · q2
b4 = b3 · q = b1 · q3
. . .
Ôîðìóëà n-ãî ýëåìåíòà
bn = b1 · qn−1
Õàðàêòåðèñòè÷åñêîå ñâîéñòâî
ãåîìåòðè÷åñêîé ïðîãðåññèè
bn−1 · bn+1 = b2
n
îòêóäà
Õàðàêòåðèñòè÷åñêîå ñâîéñòâî
|bn| = bn−1bn+1
Ôîðìóëà ñóììû
n ïåðâûõ ÷ëåíîâ ãåîìåòðè÷åñêîé ïðîãðåññèè
Sn =
bnq − b1
q − 1
èëè
Ôîðìóëà ñóììû
Sn =
b1(qn
− 1)
q − 1
ïðè q = 1
Ôîðìóëà ñóììû
áåñêîíå÷íî óáûâàþùåé ãåîìåòðè÷åñêîé ïðîãðåññèè
Ïðè |q|  1:
Sn =
b1(qn
− 1)
q − 1
=
b1qn
− b1
q − 1
=
b1 − b1qn
1 − q
=
b1
1 − q
−
b1
1 − q
·qn
Ïðè n → ∞
S →
b1
1 − q
Ôîðìóëà ñóììû
S =
b1
1 − q
×èñëî S íàçûâàþò ñóììîé áåñêîíå÷íî
óáûâàþùåé ãåîìåòðè÷åñêîé ïðîãðåññèè.
Ïðèìåðû ãåîìåòðè÷åñêèõ ïðîãðåññèé
Áàíêîâñêèé âêëàä
b1  ñóììà âêëàäà, q  ïðîöåíò
Ïîñëåäîâàòåëüíîñòü ïëîùàäåé êâàäðàòîâ, ãäå
êàæäûé ñëåäóþùèé êâàäðàò ïîëó÷àåòñÿ
ñîåäèíåíèåì ñåðåäèí ñòîðîí ïðåäûäóùåãî 
áåñêîíå÷íàÿ ãåîìåòðè÷åñêàÿ ïðîãðåññèÿ ñî
çíàìåíàòåëåì 1/2

More Related Content

Геометрическая прогрессия