際際滷

際際滷Share a Scribd company logo
TABELA: Derivadas, Integrais
e Identidades Trigonom卒etricas
 Derivadas
Sejam u e v fun存coes deriv卒aveis de x e n con-
stante.
1. y = un  y = n un1u .
2. y = uv  y = u v + v u.
3. y = u
v  y = u vv u
v2 .
4. y = au  y = au(ln a) u , (a > 0, a = 1).
5. y = eu  y = euu .
6. y = loga u  y = u
u loga e.
7. y = ln u  y = 1
u u .
8. y = uv  y = v uv1 u + uv(ln u) v .
9. y = sen u  y = u cos u.
10. y = cos u  y = u sen u.
11. y = tg u  y = u sec2 u.
12. y = cotg u  y = u cosec2u.
13. y = sec u  y = u sec u tg u.
14. y = cosec u  y = u cosec u cotg u.
15. y = arc sen u  y = u
1u2
.
16. y = arc cos u  y = u
1u2
.
17. y = arc tg u  y = u
1+u2 .
18. y = arc cot g u  u
1+u2 .
19. y = arc sec u, |u| 1
 y = u
|u|

u21
, |u| > 1.
20. y = arc cosec u, |u| 1
 y = u
|u|

u21
, |u| > 1.
 Identidades Trigonom卒etricas
1. sen2x + cos2 x = 1.
2. 1 + tg2x = sec2 x.
3. 1 + cotg2x = cosec2x.
4. sen2x = 1cos 2x
2 .
5. cos2 x = 1+cos 2x
2 .
6. sen 2x = 2 sen x cos x.
7. 2 sen x cos y = sen (x  y) + sen (x + y).
8. 2 sen x sen y = cos (x  y)  cos (x + y).
9. 2 cos x cos y = cos (x  y) + cos (x + y).
10. 1 賊 sen x = 1 賊 cos 
2  x .
 Integrais
1. du = u + c.
2. undu = un+1
n+1 + c, n = 1.
3. du
u = ln |u| + c.
4. audu = au
ln a + c, a > 0, a = 1.
5. eudu = eu + c.
6. sen u du =  cos u + c.
7. cos u du = sen u + c.
8. tg u du = ln |sec u| + c.
9. cotg u du = ln |sen u| + c.
10. sec u du = ln |sec u + tg u| + c.
11. cosec u du = ln |cosec u  cotg u| + c.
12. sec u tg u du = sec u + c.
13. cosec u cotg u du = cosec u + c.
14. sec2 u du = tg u + c.
15. cosec2u du = cotg u + c.
16. du
u2+a2 = 1
a arc tgu
a + c.
17. du
u2a2 = 1
2a ln ua
u+a + c, u2 > a2.
18. du
u2+a2
= ln u +

u2 + a2 + c.
19. du
u2a2
= ln u +

u2  a2 + c.
20. du
a2u2
= arc senu
a + c, u2 < a2.
21. du
u

u2a2
= 1
aarc sec u
a + c.
 F卒ormulas de Recorrencia
1. sennau du = senn1au cos au
an
+ n1
n senn2au du.
2. cosn au du = sen au cosn1 au
an
+ n1
n cosn2 au du.
3. tgnau du = tgn1au
a(n1)  tgn2au du.
4. cotgnau du = cotgn1au
a(n1)  cotgn2au du.
5. secn au du = secn2 au tg au
a(n1)
+ n2
n1 secn2 au du.
6. cosecnau du = cosecn2au cotg au
a(n1)
+ n2
n1 cosecn2au du.

More Related Content

Tab integrais (1)

  • 1. TABELA: Derivadas, Integrais e Identidades Trigonom卒etricas Derivadas Sejam u e v fun存coes deriv卒aveis de x e n con- stante. 1. y = un y = n un1u . 2. y = uv y = u v + v u. 3. y = u v y = u vv u v2 . 4. y = au y = au(ln a) u , (a > 0, a = 1). 5. y = eu y = euu . 6. y = loga u y = u u loga e. 7. y = ln u y = 1 u u . 8. y = uv y = v uv1 u + uv(ln u) v . 9. y = sen u y = u cos u. 10. y = cos u y = u sen u. 11. y = tg u y = u sec2 u. 12. y = cotg u y = u cosec2u. 13. y = sec u y = u sec u tg u. 14. y = cosec u y = u cosec u cotg u. 15. y = arc sen u y = u 1u2 . 16. y = arc cos u y = u 1u2 . 17. y = arc tg u y = u 1+u2 . 18. y = arc cot g u u 1+u2 . 19. y = arc sec u, |u| 1 y = u |u| u21 , |u| > 1. 20. y = arc cosec u, |u| 1 y = u |u| u21 , |u| > 1. Identidades Trigonom卒etricas 1. sen2x + cos2 x = 1. 2. 1 + tg2x = sec2 x. 3. 1 + cotg2x = cosec2x. 4. sen2x = 1cos 2x 2 . 5. cos2 x = 1+cos 2x 2 . 6. sen 2x = 2 sen x cos x. 7. 2 sen x cos y = sen (x y) + sen (x + y). 8. 2 sen x sen y = cos (x y) cos (x + y). 9. 2 cos x cos y = cos (x y) + cos (x + y). 10. 1 賊 sen x = 1 賊 cos 2 x . Integrais 1. du = u + c. 2. undu = un+1 n+1 + c, n = 1. 3. du u = ln |u| + c. 4. audu = au ln a + c, a > 0, a = 1. 5. eudu = eu + c. 6. sen u du = cos u + c. 7. cos u du = sen u + c. 8. tg u du = ln |sec u| + c. 9. cotg u du = ln |sen u| + c. 10. sec u du = ln |sec u + tg u| + c. 11. cosec u du = ln |cosec u cotg u| + c. 12. sec u tg u du = sec u + c. 13. cosec u cotg u du = cosec u + c. 14. sec2 u du = tg u + c. 15. cosec2u du = cotg u + c. 16. du u2+a2 = 1 a arc tgu a + c. 17. du u2a2 = 1 2a ln ua u+a + c, u2 > a2. 18. du u2+a2 = ln u + u2 + a2 + c. 19. du u2a2 = ln u + u2 a2 + c. 20. du a2u2 = arc senu a + c, u2 < a2. 21. du u u2a2 = 1 aarc sec u a + c. F卒ormulas de Recorrencia 1. sennau du = senn1au cos au an + n1 n senn2au du. 2. cosn au du = sen au cosn1 au an + n1 n cosn2 au du. 3. tgnau du = tgn1au a(n1) tgn2au du. 4. cotgnau du = cotgn1au a(n1) cotgn2au du. 5. secn au du = secn2 au tg au a(n1) + n2 n1 secn2 au du. 6. cosecnau du = cosecn2au cotg au a(n1) + n2 n1 cosecn2au du.