1. TABELA: Derivadas, Integrais
e Identidades Trigonom卒etricas
Derivadas
Sejam u e v fun存coes deriv卒aveis de x e n con-
stante.
1. y = un y = n un1u .
2. y = uv y = u v + v u.
3. y = u
v y = u vv u
v2 .
4. y = au y = au(ln a) u , (a > 0, a = 1).
5. y = eu y = euu .
6. y = loga u y = u
u loga e.
7. y = ln u y = 1
u u .
8. y = uv y = v uv1 u + uv(ln u) v .
9. y = sen u y = u cos u.
10. y = cos u y = u sen u.
11. y = tg u y = u sec2 u.
12. y = cotg u y = u cosec2u.
13. y = sec u y = u sec u tg u.
14. y = cosec u y = u cosec u cotg u.
15. y = arc sen u y = u
1u2
.
16. y = arc cos u y = u
1u2
.
17. y = arc tg u y = u
1+u2 .
18. y = arc cot g u u
1+u2 .
19. y = arc sec u, |u| 1
y = u
|u|
u21
, |u| > 1.
20. y = arc cosec u, |u| 1
y = u
|u|
u21
, |u| > 1.
Identidades Trigonom卒etricas
1. sen2x + cos2 x = 1.
2. 1 + tg2x = sec2 x.
3. 1 + cotg2x = cosec2x.
4. sen2x = 1cos 2x
2 .
5. cos2 x = 1+cos 2x
2 .
6. sen 2x = 2 sen x cos x.
7. 2 sen x cos y = sen (x y) + sen (x + y).
8. 2 sen x sen y = cos (x y) cos (x + y).
9. 2 cos x cos y = cos (x y) + cos (x + y).
10. 1 賊 sen x = 1 賊 cos
2 x .
Integrais
1. du = u + c.
2. undu = un+1
n+1 + c, n = 1.
3. du
u = ln |u| + c.
4. audu = au
ln a + c, a > 0, a = 1.
5. eudu = eu + c.
6. sen u du = cos u + c.
7. cos u du = sen u + c.
8. tg u du = ln |sec u| + c.
9. cotg u du = ln |sen u| + c.
10. sec u du = ln |sec u + tg u| + c.
11. cosec u du = ln |cosec u cotg u| + c.
12. sec u tg u du = sec u + c.
13. cosec u cotg u du = cosec u + c.
14. sec2 u du = tg u + c.
15. cosec2u du = cotg u + c.
16. du
u2+a2 = 1
a arc tgu
a + c.
17. du
u2a2 = 1
2a ln ua
u+a + c, u2 > a2.
18. du
u2+a2
= ln u +
u2 + a2 + c.
19. du
u2a2
= ln u +
u2 a2 + c.
20. du
a2u2
= arc senu
a + c, u2 < a2.
21. du
u
u2a2
= 1
aarc sec u
a + c.
F卒ormulas de Recorrencia
1. sennau du = senn1au cos au
an
+ n1
n senn2au du.
2. cosn au du = sen au cosn1 au
an
+ n1
n cosn2 au du.
3. tgnau du = tgn1au
a(n1) tgn2au du.
4. cotgnau du = cotgn1au
a(n1) cotgn2au du.
5. secn au du = secn2 au tg au
a(n1)
+ n2
n1 secn2 au du.
6. cosecnau du = cosecn2au cotg au
a(n1)
+ n2
n1 cosecn2au du.