際際滷

際際滷Share a Scribd company logo
12
Most read
19
Most read
22
Most read
???? ?????
???? ???? ????? Tensorflow
??? : ??? ( thx@daum.net )
??
? ????
= ??? ????.
????
????, ????, ??? ??
? ??? ? ???? ? ????
??.. ??? AI? ????
??????
?? ? ??? ???.
??????
?..
?? ???
X
?? ? ????
? ?????, ?? IP ??,???? ??? ???? - (?????)
? ???,??,??, AI?? ?? ??,??,??? ?? (????)
? ????&?? ??? ? ?? ???? ???? ??? ?? (????)
? ?????? ???? ?? C ??, ??, ??? AI ?? ?? ?? ?? (??
???)
? ??? AI,????´ '??? ???' ??? C (Chosunbiz)
? ??? ?? ???? [????]
? ???
- ???
- ?? ?? ?? -> ???/??? ???
? ???
- ??, ???, ????
- ? ?? ?? ?? -> ? ???/??? ???
- ????
? ??
???? ???
? ????? ??? ??
??? ??????? ????? ??
?, ???? ?????? ???? ??? ????
? ?? = ??? ??
?? ???? ?????? ? ????
?? : Korea Games Conference
????? ??????
?? ???? ??????
? ?? ????! ??? = DAU * PU% * ARPPU
? DAU = SUM ( NRU * Retention )
? NRU? ?? = ?
? Retention = ??? ??
? ????
? ??! ^??? ̄ ?? ????!! (???)
??? ?? ??
?? : ???!!
???? : ?????!!
?? 』 ??? But, ?? ? ???
÷ ????
?????????!!
?????? ?? ???? Cycle
?????
OP? ??
????
OP? ??/???
??
??/??
??? ??
? ???? - [??2 ? ?????6]
110? ?? ? 105? ?? (95.45%)
? ???? C [??? ??6]
131? ??? ? 57? ??(43.51%)
- ??? ??4 : 120? ? 61? ?? (50.83%)
- ??? ??5 : 126? ? 74? ?? (58.73%)
ML ?? ????. ??? ?? ???
(feat. ? ?? ?? / chorus. MS The ??)
?????? ????, ???? & Tensorflow
Tensorflow ??
? ???? ?? ?? ???? ?????
? Python / C++ ??
? CPU / GPU ????
? ??? ???? ?? ???? ??
Tensorflow ????
? Python 3.5.3 / Anaconda 4.2.0
? IDE : Pycharm
? ????? : tensorflow, plot
???? ? ??
? ????
1. ?? ? ??? ??, ??? ??/??(??????)
2. ?? ???? ? ???? ??? ??? ??
? ??
1. ??? ?? ? ??? ?? ^??? ??? ??? ??/?? ??^
????? ??
? ??? ??/?? ??
? ??? ?? * ??? = ??
?????? ?? ???? < 2.5 ? ??
??? ? ??
? ??? ?? ??
??, ??, ??? (??? ? ?? ??? ?? C unknown)
? ????? : tensorflow, plot
Tensorflow ??
# Lab 4 Multi-variable linear regression
import tensorflow as tf
import numpy as np
tf.set_random_seed(378) # for reproducibility
xy = np.loadtxt('databalancing.csv', delimiter=',', dtype=np.float32)
#xy = np.loadtxt('databalancing_YTV.csv', delimiter=',', dtype=np.float32)
x_data = xy[:, 0:-1]
#x_data = (xy[:, 0:-1] - xy[:, 0:-1].mean()) / xy[:, 0:-1].std()
y_data = xy[:, [-1]]
# Make sure the shape and data are OK
#print(x_data.shape, x_data, len(x_data))
#print(y_data.shape, y_data)
# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 9])
Y = tf.placeholder(tf.float32, shape=[None, 1])
#????
W = tf.Variable(tf.random_normal([9, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
#????
#W = tf.Variable(tf.random_uniform([9, 1], minval=0.3, maxval=0.5), name='weight')
#b = tf.Variable(tf.random_normal([1]), name='bias')
# Hypothesis using sigmoid: tf.div(1., 1. + tf.exp(tf.matmul(X, W)))
hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
# cost/loss function
cost = -tf.reduce_mean(Y * tf.log(tf.clip_by_value(hypothesis, 1e-8, 1.)) +
(1 - Y) * tf.log(tf.clip_by_value(1 - hypothesis, 1e-8, 1.)))
#cost = -tf.reduce_mean(Y * tf.log(hypothesis) +
# (1 - Y) * tf.log(1 - hypothesis))
# Accuracy computation
# True if hypothesis>0.5 else False
?? ? ????
?? ?? : 90.2 %
?? ? ????
? ?? ???? ???? ?? ??? ? ?? ???? ??
? ?? ??? ??? ?? ?? ???? ??? : 90% ? 75%
? CNN, RNN, Reinforce Learning ? ???? ?? ? learning rate, ?? ?
? ???
Q & A
?????

More Related Content

What's hot (20)

PPTX
[IGC2015] ????? ???-?? ??? MMO?
? ??
?
PDF
????? ?? ?? ??/????? ?? ???
ChangHyun Won
?
PPTX
[IGC 2017] ????? ??? - ?? ?? ??? ??
? ??
?
PDF
[NDC2017 : ???] Python ????? ???? ??????????????? - ??????? ???????? ????? ????
?? ?
?
PPTX
?? ???? ?? ??
?? ?
?
PPTX
[IGC 2017] ??? ??? - '???????? ??????' DEV ???
? ??
?
PDF
??????: #3 ????? ?? ????
Seungmo Koo
?
PDF
????????????????? ??????? ?????
Jinho Jung
?
PPTX
Player Traversal Mechanics in the Vast World of Horizon Zero Dawn
Guerrilla
?
PDF
???, ??? ?? ???: ????, NDC2017
devCAT Studio, NEXON
?
PDF
?? ????? ?? ??
ByungChun2
?
PDF
[IGC2018] ???? ??? - ?????? ???? ??? ??
? ??
?
PDF
???, ?? ?????? ??? ??????, NDC2018
devCAT Studio, NEXON
?
PDF
??? ???? ???? ???
Sunnyrider
?
PPTX
???, ???? ???? ???? ?? ??, NDC2019
devCAT Studio, NEXON
?
PDF
NDC 2016 ??? - ????? ??? ????? ??
?? ?
?
PDF
20160417糸鉛庄恢による冲匂郊奮
Takuya Minagawa
?
PDF
??? ??? MMORPG? ???? ???
QooJuice
?
PDF
?????? : #4 ?? ???
Seungmo Koo
?
PDF
[NDC 14] '?????? ???' - MMD MV ?? ??? ???? ??? ?????
Nexon Korea
?
[IGC2015] ????? ???-?? ??? MMO?
? ??
?
????? ?? ?? ??/????? ?? ???
ChangHyun Won
?
[IGC 2017] ????? ??? - ?? ?? ??? ??
? ??
?
[NDC2017 : ???] Python ????? ???? ??????????????? - ??????? ???????? ????? ????
?? ?
?
?? ???? ?? ??
?? ?
?
[IGC 2017] ??? ??? - '???????? ??????' DEV ???
? ??
?
??????: #3 ????? ?? ????
Seungmo Koo
?
????????????????? ??????? ?????
Jinho Jung
?
Player Traversal Mechanics in the Vast World of Horizon Zero Dawn
Guerrilla
?
???, ??? ?? ???: ????, NDC2017
devCAT Studio, NEXON
?
?? ????? ?? ??
ByungChun2
?
[IGC2018] ???? ??? - ?????? ???? ??? ??
? ??
?
???, ?? ?????? ??? ??????, NDC2018
devCAT Studio, NEXON
?
??? ???? ???? ???
Sunnyrider
?
???, ???? ???? ???? ?? ??, NDC2019
devCAT Studio, NEXON
?
NDC 2016 ??? - ????? ??? ????? ??
?? ?
?
20160417糸鉛庄恢による冲匂郊奮
Takuya Minagawa
?
??? ??? MMORPG? ???? ???
QooJuice
?
?????? : #4 ?? ???
Seungmo Koo
?
[NDC 14] '?????? ???' - MMD MV ?? ??? ???? ??? ?????
Nexon Korea
?

Similar to ?????? ????, ???? & Tensorflow (20)

PDF
Tensorflow for Deep Learning(SK Planet)
Tae Young Lee
?
PDF
CoreDot TechSeminar 2018 - Session4 Park Eonyong
Core.Today
?
PDF
?????????????? ?????????? ???? CS ?????????? DEVIEW 2017
Donghwa Kim
?
PDF
???? ?? ????? tensor-flow
? ??
?
PDF
[NDC2016] ?????????????????
Hwanhee Kim
?
PDF
???? ?? Tensor flow(skt academy)
Tae Young Lee
?
PDF
CNN? ??? MNIT dataset Classification ??
Yeon Woo Jeong
?
PPTX
[125] ?????????????? ?????????? ???? cs ??????????
NAVER D2
?
PPTX
???? ???? ??? ??? ???
Kwangsik Lee
?
PDF
?? ??? - Bing??? ????
Sang-Min Park
?
PDF
????????? 11???
Juhui Park
?
PPTX
MNIST for ML beginners
?? ?
?
PDF
????? ??? ??? ?? (18?)
SK(?) C&C - ???
?
PPTX
Apache MXNet?? ???? ???(Deep Learning) - ??? (AWS ????????)
Amazon Web Services Korea
?
PPTX
Chapter 11 Practical Methodology
KyeongUkJang
?
PDF
MMORPG ABUSER DETECTION WITH SAGEMAKER (Krafton) - ???, Krafton :: AWS Summit...
Amazon Web Services Korea
?
PDF
?? ??? ?????. ?? ??? ?? ??! C ??? AWS ??? ?? ?? ???? ????:: AWS Cloud Week - ...
Amazon Web Services Korea
?
PDF
Neural network? ??? ???
Tae Young Lee
?
PDF
Naive ML Overview
Chul Ju Hong
?
Tensorflow for Deep Learning(SK Planet)
Tae Young Lee
?
CoreDot TechSeminar 2018 - Session4 Park Eonyong
Core.Today
?
?????????????? ?????????? ???? CS ?????????? DEVIEW 2017
Donghwa Kim
?
???? ?? ????? tensor-flow
? ??
?
[NDC2016] ?????????????????
Hwanhee Kim
?
???? ?? Tensor flow(skt academy)
Tae Young Lee
?
CNN? ??? MNIT dataset Classification ??
Yeon Woo Jeong
?
[125] ?????????????? ?????????? ???? cs ??????????
NAVER D2
?
???? ???? ??? ??? ???
Kwangsik Lee
?
?? ??? - Bing??? ????
Sang-Min Park
?
????????? 11???
Juhui Park
?
MNIST for ML beginners
?? ?
?
????? ??? ??? ?? (18?)
SK(?) C&C - ???
?
Apache MXNet?? ???? ???(Deep Learning) - ??? (AWS ????????)
Amazon Web Services Korea
?
Chapter 11 Practical Methodology
KyeongUkJang
?
MMORPG ABUSER DETECTION WITH SAGEMAKER (Krafton) - ???, Krafton :: AWS Summit...
Amazon Web Services Korea
?
?? ??? ?????. ?? ??? ?? ??! C ??? AWS ??? ?? ?? ???? ????:: AWS Cloud Week - ...
Amazon Web Services Korea
?
Neural network? ??? ???
Tae Young Lee
?
Naive ML Overview
Chul Ju Hong
?
Ad

?????? ????, ???? & Tensorflow

  • 1. ???? ????? ???? ???? ????? Tensorflow ??? : ??? ( thx@daum.net )
  • 2. ?? ? ???? = ??? ????. ????
  • 3. ????, ????, ??? ?? ? ??? ? ???? ? ????
  • 7. ?? ? ???? ? ?????, ?? IP ??,???? ??? ???? - (?????) ? ???,??,??, AI?? ?? ??,??,??? ?? (????) ? ????&?? ??? ? ?? ???? ???? ??? ?? (????) ? ?????? ???? ?? C ??, ??, ??? AI ?? ?? ?? ?? (?? ???) ? ??? AI,????´ '??? ???' ??? C (Chosunbiz)
  • 8. ? ??? ?? ???? [????] ? ??? - ??? - ?? ?? ?? -> ???/??? ??? ? ??? - ??, ???, ???? - ? ?? ?? ?? -> ? ???/??? ??? - ???? ? ??
  • 9. ???? ??? ? ????? ??? ?? ??? ??????? ????? ?? ?, ???? ?????? ???? ??? ???? ? ?? = ??? ??
  • 10. ?? ???? ?????? ? ???? ?? : Korea Games Conference ????? ??????
  • 11. ?? ???? ?????? ? ?? ????! ??? = DAU * PU% * ARPPU ? DAU = SUM ( NRU * Retention ) ? NRU? ?? = ? ? Retention = ??? ?? ? ???? ? ??! ^??? ̄ ?? ????!! (???) ??? ?? ?? ?? : ???!! ???? : ?????!!
  • 12. ?? 』 ??? But, ?? ? ??? ÷ ???? ?????????!!
  • 13. ?????? ?? ???? Cycle ????? OP? ?? ???? OP? ??/??? ?? ??/?? ??? ?? ? ???? - [??2 ? ?????6] 110? ?? ? 105? ?? (95.45%) ? ???? C [??? ??6] 131? ??? ? 57? ??(43.51%) - ??? ??4 : 120? ? 61? ?? (50.83%) - ??? ??5 : 126? ? 74? ?? (58.73%)
  • 14. ML ?? ????. ??? ?? ??? (feat. ? ?? ?? / chorus. MS The ??)
  • 16. Tensorflow ?? ? ???? ?? ?? ???? ????? ? Python / C++ ?? ? CPU / GPU ???? ? ??? ???? ?? ???? ??
  • 17. Tensorflow ???? ? Python 3.5.3 / Anaconda 4.2.0 ? IDE : Pycharm ? ????? : tensorflow, plot
  • 18. ???? ? ?? ? ???? 1. ?? ? ??? ??, ??? ??/??(??????) 2. ?? ???? ? ???? ??? ??? ?? ? ?? 1. ??? ?? ? ??? ?? ^??? ??? ??? ??/?? ??^
  • 19. ????? ?? ? ??? ??/?? ?? ? ??? ?? * ??? = ?? ?????? ?? ???? < 2.5 ? ?? ??? ? ?? ? ??? ?? ?? ??, ??, ??? (??? ? ?? ??? ?? C unknown) ? ????? : tensorflow, plot
  • 20. Tensorflow ?? # Lab 4 Multi-variable linear regression import tensorflow as tf import numpy as np tf.set_random_seed(378) # for reproducibility xy = np.loadtxt('databalancing.csv', delimiter=',', dtype=np.float32) #xy = np.loadtxt('databalancing_YTV.csv', delimiter=',', dtype=np.float32) x_data = xy[:, 0:-1] #x_data = (xy[:, 0:-1] - xy[:, 0:-1].mean()) / xy[:, 0:-1].std() y_data = xy[:, [-1]] # Make sure the shape and data are OK #print(x_data.shape, x_data, len(x_data)) #print(y_data.shape, y_data) # placeholders for a tensor that will be always fed. X = tf.placeholder(tf.float32, shape=[None, 9]) Y = tf.placeholder(tf.float32, shape=[None, 1]) #???? W = tf.Variable(tf.random_normal([9, 1]), name='weight') b = tf.Variable(tf.random_normal([1]), name='bias') #???? #W = tf.Variable(tf.random_uniform([9, 1], minval=0.3, maxval=0.5), name='weight') #b = tf.Variable(tf.random_normal([1]), name='bias') # Hypothesis using sigmoid: tf.div(1., 1. + tf.exp(tf.matmul(X, W))) hypothesis = tf.sigmoid(tf.matmul(X, W) + b) # cost/loss function cost = -tf.reduce_mean(Y * tf.log(tf.clip_by_value(hypothesis, 1e-8, 1.)) + (1 - Y) * tf.log(tf.clip_by_value(1 - hypothesis, 1e-8, 1.))) #cost = -tf.reduce_mean(Y * tf.log(hypothesis) + # (1 - Y) * tf.log(1 - hypothesis)) # Accuracy computation # True if hypothesis>0.5 else False
  • 21. ?? ? ???? ?? ?? : 90.2 %
  • 22. ?? ? ???? ? ?? ???? ???? ?? ??? ? ?? ???? ?? ? ?? ??? ??? ?? ?? ???? ??? : 90% ? 75% ? CNN, RNN, Reinforce Learning ? ???? ?? ? learning rate, ?? ? ? ???
  • 23. Q & A
  • 24. ?????