12. 264 蔡宜成 楊政達
悉的,都會被處理至晚期反應選擇階段;相對地,當
干擾刺激為不熟悉的時候,干擾刺激則不會被處理,
因此不會影響目標作業的判斷。
如果對於人臉刺激的熟悉度具有重大影響,對
於一般參與者來說,本研究所使用的圖臉刺激也是常
見的圖像,屬於熟悉的視覺刺激材料,為何在本研究
中,干擾圖臉在目標作業的知覺負荷量提高之後(異
質非目標臉組),便無法被處理,影響目標作業的
反應選擇?在此提出兩個可能性:(1)人臉的處理優
勢,主要發生於與其他非臉物體相比較之時(Ro et
al., 2001),且在本實驗的異質非目標臉組下,搜尋目
標人臉並做出判斷需要耗費較多的處理資源,因此,
無法同時處理干擾圖臉。(2)圖臉所蘊含的臉部訊息
與真人臉並不相等。圖臉主要由簡單的輪廓、眼睛及
線條嘴巴構成,雖然具有人臉特徵,但也少了許多真
人臉的細部特徵,像是頭髮、眉毛、耳朵、鼻子等。
圖臉的操弄,往往會使得某些特徵被過於誇張地表現
(Horstmann & Bauland, 2006),且同時使得人臉刺
激的同質性過高(Juth, Lundqvist, Karlsson, & ?hman,
2005)。在種種實驗情境之下,只需要藉由判斷少數
知覺特徵,參與者便可正確且迅速地完成目標圖臉的
判斷,這樣的實驗情境較難模擬真實人臉所帶來的效
果。後續研究有待使用真實人臉進行研究,觀察改以
真實人臉作為干擾刺激時,是否總是被自動地處理至
晚期反應選擇階段。
近年來,大腦造影的研究也支持人臉處理受到
作業調控的想法,人臉不是總是會被自動地處理,其
處理受到注意力與作業需求的調控,我們認為此結果
與本篇結果可以互相呼應。Wojciulik、Kanwisher及
Driver(1998)使用知覺配對作業,要求參與者判斷
左右或上下呈現的刺激是否相同,並同時忽略上下或
左右呈現的刺激。結果發現,僅有當參與者針對人臉
刺激進行配對比較時,FFA才會活化。當參與者針對
房子或是十字進行配對比較時,儘管在非注意區域中
有人臉出現,FFA仍然不會被活化。此結果顯示FFA是
否活化,受到參與者是否將注意力放在人臉刺激的處
理上所影響。Kanwisher、Tong及Nakayama(1998)
比較了在被動觀察(passive viewing)作業與1-back作
業下,參與者觀看正立或倒立人臉刺激的FFA活化情
形。結果發現在人臉為正立時,FFA的活化程度高於
人臉為倒立時的活化程度,且在1-back作業下,FFA的
活化程度較被動觀察情形下來的高,顯示作業對於處
理的需求可以調節處理人臉特定區域的活化程度。另
外,Gauthier等人(2000)分別找了鳥和車專家,測
量其對於鳥和車子分類判斷作業的敏感度(d’),並
發現僅有在特定作業情形下(1-back location task),
右側FFA的活化程度與專家的程度有正相關存在,然
而,在1-back identity 作業下則無此相關存在。此結果
意涵著,FFA的活化不一定只跟臉的處理有關,而是
跟專家的程度有關,且不同作業需要仰賴對於刺激不
同程度的處理(level of categorization),其將會決定
FFA的活化程度。因此,以上的諸多證據皆顯示FFA
的活化會受到不同由上而下(top-down)的因素所調
節。
綜合以上的實驗結果與推論,本研究認為干擾人
臉是否被處理,取決於目標作業的知覺負荷量高低,
以及目標作業是否競爭著有限的人臉處理資源。干擾
人臉不完全符合過去研究者所提出的,總是會被自動
地處理(Lavie et al., 2003; Neumann & Schweinberger,
2008);也不是如同Bindemann等人(2005)所提出
的,只要目標作業為人臉判斷作業,干擾人臉就不會
被處理。本研究發現在低知覺負荷量下,處理目標作
業之後,其所剩餘的知覺處理資源會自動地分散到干
擾物上,干擾圖臉便會被處理,影響目標作業的判
斷。相對地,在高知覺負荷量下,目標作業耗盡處理
資源,干擾物便不會被處理,目標與干擾刺激的反應
相容性則不會影響目標作業的表現。基於此想法,我
們認為人臉的處理並非如過去研究者所述的具有優先
性或特殊性,總是會被自動處理,人臉作為一個干擾
刺激與非臉物體相似,會受到知覺負荷量的調控。
註 釋
1. 特別感謝匿名審查委員給予此意見,使得本篇研究的討論更為
嚴謹。
參考文獻
Bindemann, M., Burton, A. M., & Jenkins, R. (2005).
Capacity limits for face processing. Cognition, 98, 177-
197.
Boutet, I., & Chaudhuri, A. (2001). Multistability of
overlapped face stimuli is dependent upon orientation.
Perception, 30, 743-753.
Broadbent, D. E. (1958). Perception and communication.
New York: Pergamon Press.
10-楊政達.indd 264 2012/6/24 下午 09:03:34
13. 圖臉知覺負荷量 265
Broadbent, D. E. (1965). Information processing in the
nervous system. Science, 150(3695), 457-462.
Bruce, V., & Young, A. (1986). Understanding face
recognition. British Journal of Psychology, 77, 305-327.
Deutsch, J. A., & Deutsch, D. (1963). Attention: Some
theoretical considerations. Psychological Review, 70,
80-90.
Diamond, R., & Carey, S. (1986). Why faces, are and
are not special: An effect of expertise. Journal of
Experimental Psychology: General, 115, 107-117.
Duncan, J. (1980). The locus of interference in the
perception of simultaneous stimuli. Psychological
Review, 87, 272-300.
Duncan, J., & Humphreys, G. W. (1989). Visual search
and stimulus similarity. Psychological Review, 96, 433-
458.
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise
letters upon the identification of a target letter in a
nonsearch task. Perception & Psychophysics, 16, 143-
149.
Esteves, F., Dimberg, U., & ?hman, A. (1994).
Automatically elicited fear: Conditioned skin
conductance responses to masked facial expressions.
Cognition & Emotion, 8, 393-413.
Farah, M. J. (1996). Is face recognition ‘special?’
Evidence from neuropsychology. Behavioural Brain
Research, 76, 181-189.
Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995).
What causes the face inversion effect? Journal of
Experimental Psychology: Human Perception and
Performance, 21, 628-634.
Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W.
(2000). Expertise for cars and birds recruits brain areas
involved in face recognition. Nature Neuroscience, 3,
191-197.
Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P.,
& Gore, J. C. (1999). Activation of the middle fusiform
‘face area’ increases with expertise in recognizing
novel objects. Nature Neuroscience, 2, 568-573.
Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004).
The fusiform face area subserves face perception,
not generic within-category identification. Nature
Neuroscience, 7, 555-562.
Hakoda, Y. (2003). Domain-specificity versus domain-
generality in facial expressions and recognition.
Japanese Journal of Psychonomic Science, 22, 121-
124.
He, C., & Chen, A. (2010). Interference from familiar
natural distractors is not eliminated by high perceptual
load. Psychological Research, 74, 268-276.
Hershler, O., & Hochstein, S. (2005). At first sight: A
high-level pop out effect for faces. Vision Research, 45,
1707-1724.
Horstmann, G., & Bauland, A. (2006). Search
asymmetries with real faces: Testing the anger-
superiority effect. Emotion, 6, 193-207.
Jenkins, R., Lavie, N., & Driver, J. (2003). Ignoring
famous faces: Category-specific dilution of distractor
interference. Perception & Psychophysics, 65, 298-309.
Jonides, J. (1981). Voluntary versus automatic control
over the mind’s eye’s movement. In J. B. Long & A.
D. Baddeley (Eds.), Attention and performance IX
(Vol. 9, pp. 187-203). Hillsdale, NJ: Lawrence Erlbaum
Associates.
Juth, P., Lundqvist, D., Karlsson, A., & ?hman, A. (2005).
Looking for foes and friends: Perceptual and emotional
factors when finding a face in the crowd. Emotion, 5,
379-395.
Kanwisher, N. (2000). Domain specificity in face
perception. Nature Neuroscience, 3, 759-763.
Kanwisher, N., Tong, F., & Nakayama, K. (1998). The
effect of face inversion on the human fusiform face
area. Cognition, 68, B1-B11.
Kawabata, H. (2003). Domain-specificity and generality
in the brain. Japanese Journal of Psychonomic Science,
22, 132-136.
Lavie, N. (2005). Distracted and confused?: Selective
attention under load. Trends in Cognitive Sciences, 9,
75-82.
Lavie, N., Ro, T., & Russell, C. (2003). The role
of perceptual load in processing distractor faces.
Psychological Science, 14, 510-515.
10-楊政達.indd 265 2012/6/24 下午 09:03:34
14. 266 蔡宜成 楊政達
Lavie, N., & Tsal, Y. (1994). Perceptual load as a major
determinant of the locus of selection in visual attention.
Perception & Psychophysics, 56, 183-197.
Liao, H. I., & Yeh, S. L. (2007). Involuntary orienting
caused by salient stimuli outside focal attention:
Comparison of two paradigms. Chinese Journal of
Psychology, 49, 145-158.
Moray, N. (1959). Attention in dichotic listening:
Affective cues and the influence of instructions. The
Quarterly Journal of Experimental Psychology, 11, 56-
60.
Murray, J. E. (2004). The ups and downs of face
perception: Evidence for holistic encoding of upright
and inverted faces. Perception, 33, 387-398.
Neumann, M. F., & Schweinberger, S. R. (2008). N250r
and N400 ERP correlates of immediate famous face
repetition are independent of perceptual load. Brain
Research, 1239, 181-190.
Palermo, R., & Rhodes, G. (2002). The influence of
divided attention on holistic face perception. Cognition,
82, 225-257.
Ro, T., Russell, C., & Lavie, N. (2001). Changing
faces: A detection advantage in the flicker paradigm.
Psychological Science, 12, 94-99.
Schneider, W., Eschman, A., & Zuccolotto, A. (2002).
E-prime user’s guide. Pittsburgh, PA: Psychology
Software Tools.
Stenberg, G., Wiking, S., & Dahl, M. (1998). Judging
words at face value: Interference in a word processing
task reveals automatic processing of affective facial
expressions. Cognition & Emotion, 12, 755-782.
Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes
in face recognition. The Quarterly Journal of
Experimental Psychology A: Human Experimental
Psychology, 46, 225-245.
Theeuwes, J. (1991). Exogenous and endogenous control
of attention: The effect of visual onsets and offsets.
Attention, Perception & Psychophysics, 49, 83-90.
Theeuwes, J., Kramer, A. F., & Kingstone, A. (2004).
Attentional capture modulates perceptual sensitivity.
Psychonomic Bulletin & Review, 11, 551-554.
Theeuwes, J., & Van der Stigchel, S. (2006). Faces
capture attention: Evidence from inhibition of return.
Visual Cognition, 13, 657-665.
Wojciulik, E., Kanwisher, N., & Driver, J. (1998). Covert
visual attention modulates face-specific activity in
the human fusiform gyrus: fMRI study. Journal of
Neurophysiology, 79, 1574-1578.
Yang, C.-T., Shih, C.-H., Cheng, M., & Yeh, Y.-Y. (2009).
Similarity modulates the face-capturing effect in
change detection. Visual Cognition, 17, 484-499.
Yantis, S., & Jonides, J. (1990). Abrupt visual onsets
and selective attention: Voluntary versus automatic
allocation. Journal of Experimental Psychology:
Human Perception and Performance, 16, 121-134.
Yovel, G., & Kanwisher, N. (2004). Face perception:
Domain specific, not process specific. Neuron, 44, 889-
898.
10-楊政達.indd 266 2012/6/24 下午 09:03:34
15. 267圖臉知覺負荷量
The Effect of Perceptual Load on the Processing
of a Distracting Schematic Face
Yi-Cheng Tsai and Cheng-Ta Yang
Department of Psychology, National Cheng Kung University
Faces are special as they can be processed with higher priority compared to the non-face objects. Even when
faces are presented as distractors, they are automatically processed to influence response selection. However, an earlier
study (Bindemann, Burton, & Jenkins, 2005) showed that a distracting face was not processed to influence response
selection when a face categorization task was performed. To solve this contradiction, this study investigated whether a
salient distracting face is processed when participants were required to search for a face among five non-targets and
judge its emotionality (Experiments 1, 2, and 4) or identity (Experiment 3). Response compatibility between target and
distractor faces was manipulated to examine whether the distractor is processed. Results showed that when non-targets
were five identical yellow circles (Experiments 1 and 2) and neutral faces (Experiments 1 and 3), the compatibility effect
was observed (higher accuracy or faster response time in the compatible condition than in the incompatible condition); in
contrast, when the non-target faces were upright (Experiments 2, 3, and 4) and inverted heterogeneous faces (Experiment
4), the compatibility effect was eliminated. These results suggested that perceptual load can modulate the processing of
a distracting face. In a low-load condition, the distracting face is processed, while in a high-load condition the distracting
face is not processed to influence response selection. The results are consistent with the proposals from both perceptual
load theory and the attentional window perspective.
keywords: attentional window, compatibility effect, face perception, perceptual load
10-楊政達.indd 267 2012/6/24 下午 09:03:34